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a b s t r a c t

Embedded domain-specific languages (EDSLs) are known to improve the productivity of
developers. However, for many domains no DSL implementation is available and two
important reasons for this are: First, the effort to implement EDSLs that provide the
domain’s established syntax (called concrete syntax) is very high. Second, the EDSL and
its underlying general-purpose programming language (GPL) are typically tightly integrated.
This hampers reusability across different GPLs. Besides these implementation issues, the
productivity gains of using EDSLs are also limited by the lack of explicit tool support for
EDSL users—such as syntax highlighting or code analyses.

In this paper, we present an approach that significantly reduces the necessary effort
to implement embedded DSLs with concrete syntax. The idea is to use island grammars to
specify the EDSL’s concrete syntax. This enables the developer to implement the embedded
DSL as a library and to incrementally specify the concrete syntax using meta-data. Only
those parts of the EDSL’s grammar need to be specified that deviate from the grammar of
the GPL. By analyzing an EDSL’s implementation using reflection, it is possible to provide
tool support for EDSLswithout having the developer implement it explicitly, such as syntax
highlighting. An evaluation demonstrates the feasibility of our approach by embedding a
real-world DSL into a GPL.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Domain-specific languages (DSLs) [1] are frequently employed to foster the productivity of end users. To achieve this goal,
the syntax and semantics of a DSL are defined such that they resemble a domain’s commonly used language. Traditionally,
DSLs were used to write self-contained programs; for example, to extract data from a database using SQL. Lately, however,
DSLs are more and more frequently embedded into general-purpose programming languages (GPLs) to enable expressing
domain-specific problems using the domain’s natural concepts and language.

When embedding DSLs, themain problems are the integration and interaction of DSL codewith existing code and how to
enable the DSL to use the domain’s established syntax and semantics. We can distinguish two main approaches w.r.t. how
a DSL is embedded in a GPL [2]: heterogeneous embedded DSLs and homogeneous embedded DSLs. In case of heterogeneous
embedded DSLs, a specialized tool—in general some kind of pre-processor—has to first process the code. The task of the pre-
processor is to rewrite DSL expressions into executable GPL code. After that, the compiler of the GPL compiles the code
as usual. An example of a heterogeneous embedded DSL is SQLJ [3] which enables the embedding of SQL code into Java code.
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Homogeneous embedded DSLs are ‘‘just’’ libraries developed in the GPL inwhich they are embedded and that provide domain-
specific constructs [4]. Independent of the chosen embedding approach, a GPL is generally called a host language if other
languages are embedded in it.

In the following, we will describe the tradeoffs of both approaches. The main advantage of heterogeneous embedded
DSLs is that they support the domain’s established syntax (called concrete syntax in the following). This is particularly
important as a comparative study [5] has revealed that missing support for concrete syntax significantly lowers the end
user’s productivity in writing DSL code. Themain obstacles of heterogeneous embedded DSLs are threefold. First, to support
another host-language, the pre-processor typically has to be reimplemented from scratch. Second, pre-processors are known
to be hard to compose, becausemost of themassumea fixed input syntax. Thismakes it practically impossible to usemultiple
embedded DSLs in parallel. Third, the implementation of a DSL requires a formalization of the syntax of the domain-specific
language. Additionally, those expressions of the host language need to be specified that are at the syntactic boundary; i.e.,
where expressions of the EDSL can be used as sub-expressions of the host language. This is also called syntactic assimilation
[6] and typically requires significant effort.

The problems of heterogeneous embedded DSLs are partially solved by homogeneous embedded DSLs since they are
developed in the host language. In the latter case the EDSL’s implementation is just a library. Hence, a specification of the
syntax and corresponding tools is not required. This helps to significantly reduce the necessary effort. Additionally, using
multiple DSLs in the same program is as simple as using multiple libraries. But, by having to reuse the syntax of the host
language, the DSL’s concrete syntax is typically not close to the concrete syntax of the domain [6,2]. This severely hampers
the comprehensibility of such DSLs.

To provide concrete syntax for DSL programs—without suffering from some of the main problems of traditional het-
erogeneous embedded DSLs—several approaches were proposed that use meta-programming [6,7,2,8,9]. These approaches
generally suffer from the following issues: First, language developers still have to provide the complete formal syntax for
each embedded DSL [6,2,9]. Second, for each supported host language the complete grammar has to be available [6,7] in
the format of the approach, which is generally not the case. Third, most approaches [2,8,9] support only one particular host
language, which hinders the reusability of EDSL implementations. Overall, the effort necessary to develop an EDSL using
these approaches is significantly higher than the effort to develop a homogeneous embedded DSL.

In the following, we propose an approach to implement embedded DSLs that combines the advantages of heterogeneous
embedded DSLs with the advantages of homogeneous embedded DSLs and which avoids the respective disadvantages.
That is, our approach facilitates the development of EDSLs that provide concrete syntax, but avoids the need to specify
the complete grammar of the EDSL and/or the host language. Using our approach the effort to implement an EDSL with
concrete syntax is practically identical to the effort necessary to develop a homogeneous embedded DSL for the respective
domain. Furthermore, our approach is host-language independent and provides a generic tool that can be used to embed
DSLs in various host languages.

The fundamental idea of our approach is that a language developer starts with the implementation of a homogeneous
embedded DSL and then—step by step—adds meta-information regarding the concrete syntax of the domain to the DSL
implementation. By using so-called island grammars [10] the developer only needs to specify those parts of the grammar of
the host language that are relevant w.r.t. the EDSL implementation. Furthermore, only those parts of the EDSL’s syntax need
to be specified that are not compatible with the host language’s syntax.

A second major issue with (homogeneous) EDSLs is that they are not explicitly supported by IDEs. This lack of explicit
support decreases the end users’ productivity [1,5]. In general, IDEs use the host language’s rules for syntax highlighting
and code completion also for the EDSL code. But these rules often do not fit the domain’s concepts well. For example, the
keywords of the domain-specific language may be implemented using types, methods and variables of the host language
and are correspondingly highlighted. However, from the point of view of the domain-specific language, they should all be
highlighted as keywords of the domain. Hence, in such cases the host-language-based syntax highlighting of the EDSL code
can even hamper its comprehension. Furthermore, compile-time error messages are also unrelated to the domain and its
concepts. As a first step towards solving these issues, we propose an approach that, based on the analysis of an EDSL’s
implementation, performs domain-specific syntax highlighting for the respective code.

The contributions of this paper are as follows: (1) A comprehensive discussion of the use of island grammars for EDSL
specifications. (2) An evaluation that shows that island grammars help to significantly reduce the necessary effort when
developing newEDSLs. (3) A concrete approach for the definition of an EDSL’s syntax and semantics that facilitates evolution.
(4) A proposal for how to incrementally add concrete syntax to an EDSL. (5) The first implementation of a language
workbench that supports the usage of multiple EDSLs that are deployed in binary form and which do not need to be
recompiled by users. (6) A prototype, which is a set of Eclipse plug-ins that can be downloaded from http://github.com/
stg-tud/tigerseyeplugin. It implements the specification of new languages, supports syntax-highlighting for arbitrary EDSLs
and can execute those EDSLs.

The remainder of this paper is organized as follows: Section 2 briefly presents necessary background information
regarding parsing of programs. Section 3 discusses the development and usage of independent EDSLs. Section 4 discusses
IDE support for EDSLs. Section 5 discusses the concept and Section 6 the implementation of our prototype. Section 7 presents
the evaluation. Section 8 compares our approach to related work. Finally, Section 9 concludes the paper.
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Fig. 1. The relation between developers and users of EDSLs.

2. Parsing programs

Traditionally, to implement a new DSL, first the grammar is specified w.r.t. the domain’s established notation using
formalisms, such as BNF or SDF [11]. Given the formal definition of the grammar, the developer can then use a parser
generator to generate various tools that support processing programs written in the language. For example, often the lexer,
the parser, and the classes to represent the abstract syntax tree (AST) are generated.

However, most established parsers only support a specific class of context-free grammars (CFGs) [12], such as LALR, LL(k),
LR(k) grammars. That is, to be processable by the parser–generator the grammar not only has to be context-free, but it has
to have additional properties. For example, it has to be free of ambiguities, it has to be in Chomsky normal form (CNF), or
it must not be left-recursive. Furthermore, the composition of two or more grammars is generally not supported, because
the combined grammar is not guaranteed to have the required properties [6,2]. If we want to support programs that use
multiple DSLs, the value of such parser–generators is significantly limited.

Expression grammars [13] is a relatively new approach that enables composition of languages. But, it also does not
support all context-free languages, which is generally required to support the definition of ‘‘arbitrary’’ context-free DSLs [6].

Parsing algorithms that support arbitrary CFGs are the SGLR [14], GLL [15], and Earley [16] algorithm. They support the
composition of languages, because the combination of two CFGs is again a CFG. In particular, these algorithms support
ambiguous grammars by creating a forest of ASTs that records all possible ASTs containing all ambiguities. Disambiguation
filters [17] can then be used to select the right AST from this forest of ASTs.

Island grammars [10] support parsing programs even if only a subset of the productions of the complete formal syntax of
the language is specified. In general, an island grammar only completely formalizes the language constructs of interest (the
islands). To match the remainder (the water), liberal productions are specified. These liberal productions, calledwater rules,
recognize characters from expression types that are not recognized by the islands. Hence, water rules are used to specify
the parts of a program that need not be analyzed any further. When composing island grammars of multiple languages,
programs can be parsed that mix expressions from those languages in unexpected ways [18]. We propose to use island
grammars to avoid what language developers always have to formalize, the complete grammar of the embedded DSL and
the host languages. Compared to the traditional use of island grammars as a means to avoid the formalization of a legacy
language in the reverse-engineering context, we employ them to reduce the development costs for a new language.

3. Independent development and deployment of EDSLs

As shown in Fig. 1, in our approach the developers of embedded domain-specific languages can independently and
incrementally develop (1), compile (2), and distribute (3) the language implementations. Hence, our approach enables
division of labor for language development. Given the implementations of multiple EDSLs, users of the EDSLs can then
selectively deploy (4) those languages that they require to develop the application at hand (5). Compared to existing EDSL
approaches with support for concrete syntax, our approach does not require that language developers need to develop and
compile all EDSLs in one step in which the source code of every language implementation must be available.

Language development. As in case of homogeneous EDSLs, our approach enables language developers to independently
develop languages in the form of libraries in an object-oriented language. Unlike in case of heterogeneous EDSLs, language
developers can still use the host language’s concepts for the modular development of a language implementation, i.e., they
implement a new EDSL using standard interfaces and classes. In a second step, it is then possible to extend or refine the
language by means of grammar inheritance [6,19,20]. That is, it is possible to define new syntax and semantics by inheriting
from the classes of the existing implementation. To support concrete syntax for the extended or refined language language,
developers can incrementally add the necessary meta-data.

Language compilation. In our approach, language developers are still able to compile each of their languages independently
from each other. At the end, for each language, a plug-in is built that contains the compiled classes of the implementation.
Unlike with other EDSL approaches, a language plug-in just consists of binary code (3).
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Fig. 2. The language container architecture.

Language deployment. Deployment of new languages is greatly facilitated by supporting the download of EDSLs directly
from the Internet (4). The download is triggered when the end user registers a new EDSL. After the download has finished,
the container’s services automatically adapt themselves to support the EDSL. All information that an end user needs to
provide is:

(a) the URL from which the container can download the plug-in binaries,
(b) a unique key for the language, which will be part of the file name extension for stand-alone EDSL program files,
(c) optionally, the preferred keyword color for syntax highlighting, and
(d) if necessary, a selection of options that trigger special transformations for programs of that language.

Unlike other approaches that generate IDEs for (E)DSLs, our language container does not need to be regenerated or recom-
piled, e.g., when new languages are selected by the end user or updates become available.

Language composition. When combining two languages, we have to compose the languages at the syntax level and the
semantic level. To facilitate the composition we rely on important results from related work as explained in the following.

We use an Earley parser [16] which supports composable island grammars [10]. The chosen parser is able to handle
syntax ambiguities by creating forests of ASTs. To facilitate the selection of the correct AST, EDSL developers and users can
use disambiguation filters [17]. As usual for homogeneous embedding approaches [21], semantic composition takes place
at the host-language level, after the domain objects are mapped to objects in the host language. Conflicts—if any—are then
identified by the host language compiler. Using this proposed approach makes—in many cases—the composition of EDSLs
possible without requiring that an EDSL has to be changed or adapted to enable composition.

Application development. Using our reflective IDE, the end user can write stand-alone EDSL programs or embed DSL
statements into programs of the host language.When end users use the primitives of various EDSLs inside their applications,
our plug-in takes care of orchestrating the transformation of the application code with embedded DSL statements into an
executable form. As long as there are no conflicts1 this transformation process is completely transparent to the user. That is,
the end user can conveniently compile such EDSL programs and run them from the IDE. In general, to help prevent conflicts,
quotations such as #sql(...) could be used. However, if the EDSL developers have not foreseen possible conflicts, users
can always extend the EDSLs to enable conflict-free compositions.

4. The IDE as a language container

As already stated in the introduction, explicit IDE support for embedded languages is crucial, but developers of EDSLs
generally do not implement special tool support due to the required effort. In this section, we now discuss how to provide
IDE support which keeps the effort required by the EDSL developers at a minimal level. Basically, we propose to extend the
host language’s IDE with special support to reflect on EDSLs.

Fig. 2 shows the proposed architecture for IDEs that act as language containers for embedded DSLs. For a standard IDE,
such as Eclipse, (index 1), a language container plug-in (index 2) needs to be implemented that adds the generic support
required for tool support for EDSLs. The language container has a language registry which is used by the services, such as
the syntax highlighter, to retrieve an EDSL’s meta-data. The configuration of the container contains all relevant information
regarding user-specific options and the selected EDSLs. The language container itself provides extensions points for language
transformers (index 3) and for different host languages (index 4). Finally, there is a set of language plug-ins for EDSLs (index 5)
that provide the meta-data for the EDSLs.

1 In Section 7.3 we will discuss a concrete example.
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For every registered EDSL several services are available: (a) services related to editing the source code like syntax
highlighting (index i) and code completion, (b) pre-processors that make EDSL programs compilable, (c) compilers to translate
EDSL programs into a binary form, (d) launchers to start EDSL programs, and (e) generic debugging support for EDSL programs.
These container services are generic in the sense that they are not specific for a particular EDSL. These services all rely on
the meta-data provided by the EDSLs, which is stored in the registry, and the general configuration information. Using this
information the services are specialized for the particular EDSLs. For example, to enable domain-specific syntax highlighting
for SQL, the editor services look up the SQL grammar from themeta-data available in the SQL language plug-in, and then use
this meta-data to configure the generic syntax highlighter. This architecture and the fact that all services are implemented
against the meta-data provided by EDSLs frees the developers of EDSLs from implementing special support for the different
services offered by IDEs.

5. Concrete syntax for homogeneous embedded DSLs

In this section, we first elaborate on the implementation of homogeneous embedded DSLs from the point of view of the
language developer. After that, we will show how to provide concrete syntax for an EDSL. Finally, the inner workings of our
approach are presented before we conclude the presentation of our approach by discussing how to support further host
languages.

The running example to demonstrate our approach is the embedding of a subset of SQL in the Groovy GPL, called TinySQL.
The goal is to make it possible to write programs like the one in Listing 1. The select statement (Line 2) is defined using
TinySQL while the rest of the program is written in Groovy; both languages are seamlessly integrated. The program uses
TinySQL’s concrete syntax (cf. Listing 2) and prints out a list of peoples’ names and ages from the result of an embedded
TinySQL statement.

1 println "Registered people:"
2 List<Map> result = SELECT Name,Age FROM People
3 result .each{ Map row −>
4 println "Name: ${row.Name} Age:${row.Age}"; }

Listing 1. Embedded TinySQL program in Groovy.

1 Statement → Query
2 Query → "SELECT" Columns "FROM" Tables
3 Columns → Id | Id "," Columns
4 Tables → Id "," Tables | Tables → Id

Listing 2. The Grammar of TinySQL.

We chose Groovy as the host language for our examples because it has a very flexible syntax. This reduces the effort
necessary to develop an EDSLs grammar as wewill discuss in the following. However, this is not a crucial/necessary feature;
just a beneficial one. Other modern programming languages such as Scala could also be used.

5.1. Defining a homogeneous EDSL

A new homogeneous EDSL is implemented by a set of classes in the host language. These classes have to adhere to the
conventions listed below to enable the integration with our approach.

To embed a DSL the following artifacts have to be created:

1. The language interface that declares the language constructs of the DSL andwhichmust extend the DSL marker interface.2
In the language interface, the developer declares a method for each expression type that takes sub-expressions as
arguments and that will return a computation for a corresponding expression.

2. The language implementation defines the execution semantics of the DSL. It consists of a class that must subclass the
Interpreter class, which acts as a façade to a set of classes or third-party libraries. The language implementation class
implements the language interface. By implementing each declared method, the class provides execution semantics for
each expression type.

In the following, we only discuss the embedding of languages into Groovy, but our approach would be similar for other
host languages.

2 This means the DSL interface does not declare any methods.
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Listing 3 shows the interface for the homogeneous EDSL TinySQL. The interface only defines a single method3 to execute
select statements.

1 interface ITinySQL extends DSL {
2 List<Map> selectFrom(String[] columns, String[] tables);
3 }

Listing 3. The interface of TinySQL.

Given the constraints of the host language, the syntax of the homogeneous EDSL cannot be optimal in most cases. In the
following, we use the term compromised syntax to refer to the syntax that is provided by the homogeneous EDSL.

Defining the semantics. To implement the execution semantics of an EDSL, a language developer basically just implements
the EDSL’s language interface. Since the focus of this paper is to discuss support for concrete syntax, we only sketch the
implementation of the execution semantics for EDSLs. For further details we refer to Dinkelaker et al. [22].

Listing 4 presents an excerpt of the class TinySQLInterpreter that implements the semantics of TinySQL. In general,
an EDSL class extends the Interpreter class and implements the EDSL’s language interface. The Interpreter class
primarily declares a method (eval) to evaluate EDSL programs. For TinySQL, the class implements the language interface
ITinySQL. Additionally, it has an attribute to hold an SQL connection and implements the selectFrom method. The
method first checks that all arguments are correct. Then it constructs an SQL statement and uses Groovy SQL4 to execute
the statement using a JDBC connection. The method rows in Line 9 finally returns a result set as a List that contains Map
objects as rows.

1 class TinySQLInterpreter extends Interpreter
2 implements ITinySQL {
3 private groovy.sql.Sql connection = newInstance("jdbc:...");
4 ...
5 List<Map> selectForm(String[] columns, String[] tables) {
6 ... // check arguments to be correct
7 String query = "SELECT " + Util.implode(",", columns);
8 query += " FROM " + Util.implode(",", tables);
9 return sqlConnection.rows(query);

10 }
11 }

Listing 4. The implementation of TinySQL.

Embedding DSL expressions into a host program. To homogeneously embedDSL expressions into host language programs, the
compromised DSL syntax has to be enabled in the host language. Depending on the host language, different mechanisms –
e.g., static imports in case of Java and Scala, or closures andmeta-objects in case of Groovy – can be used.We call the additional
program logic that is necessary to execute a DSL statement the bootstrap logic.

For example, to execute SQL statements written using the homogeneous embedded DSL TinySQL (selectFrom in
Listing 5 Line 5), we need an instance of the corresponding language interpreter (TinySQLInterpreter) and have to
pass the DSL statement to it (cf. Listing 5). Tomake the latter possible, we have to first wrap the DSL statement into a closure
(Lines 2–4) and have to pass the closure to the interpreter (Line 5). At runtime, when the closure—encapsulating our EDSL
statement—is passed to the interpreter, the closure is immediately evaluated and the result is returned.

1 println "Registered people:"
2 Closure dslProgram = {
3 return selectForm(["Name","Age"],["Person"]);
4 }
5 List<Map> result = new TinySQLInterpreter().eval(dslProgram);
6 result .each{ Map row −>
7 println "Name: ${row.Name} Age:${row.Age}"; }

Listing 5. Program using the homogeneous embedded DSL TinySQL.

3 This method is expected to return a computation (or value) for the corresponding SELECT expression type. For example, we represent query results
with a List of Map objects. Each row is one of the list items containing a Map that holds a key-value pair for each cell, in which the key is the cell’s column
name associated to the cell’s value.
4 Groovy SQL: http://docs.codehaus.org/display/GROOVY/Tutorial+6+-+Groovy+SQL.

http://docs.codehaus.org/display/GROOVY/Tutorial+6+-+Groovy+SQL
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The bootstrap logic, i.e. the closure that wraps the DSL statement and the instantiation of the DSL interpreter, is always
implemented in the same way and is automatically generated by our approach, as we will describe later on.

5.2. Enabling concrete syntax for EDSLs

In this section, we discuss how language developers can add support for concrete syntax for their homogeneous
embedded DSLs.

Incremental definition of concrete syntax. To incrementally define concrete syntax for embedded DSLs, the language
developer adds annotations to their EDSL implementation classes to specify the EDSL’s grammar.

For every method that defines an expression type, the EDSL developer adds an annotation @DSLMethod to define the
concrete syntax for the corresponding expression type. The annotation has the element production that defines the right-
hand side of the production rule for this method. The production rule is obtained as a string and defines the categories in
the production rule.

From each production’s string, the necessary meta-data is extracted. In the string, the categories are delimited by
the whitespace escape character, which is the underscore. One underscore denotes a required whitespace ( ! ), and two
underscores denote an optional whitespace ( ? ). Terminal categories simply use their ASCII representation. Non-terminal
categories are defined by argument placeholders, which are prefixed by the parameter escape character (by default, "p")
followed by the index of the argument in which the non-terminal will be passed to the method. As a result, for each
@DSLMethod annotation, the EDSL grammar automatically yields a production.

1 interface ITinySQL extends DSL {
2 @DSLMethod(production="SELECT__p0__FROM__p1")
3 List<Map> selectFrom(String[] columns,
4 String[] tables);
5 }

Listing 6. The interface of TinySQL.

For example, Listing 6 shows the definition of the TinySQL interface that defines concrete syntax. The annotation in Line 2
defines a production (Statement → "SELECT" ? String[] ? "FROM" ? String[])with four relevant categories on the right-
hand side: "SELECT", String[], "FROM", and String[]. By default,5 the left-hand side category of the production is Statement
which is expected to be a category of the host language and which identifies where the DSL’s expression can be embedded
(cf. Line 3 in Listing 9).

The textual encoding of production rules used by our approach resembles familiar notations to ensure that developers can
easily understand them. Hence, most OO developers should be able to immediately start developing EDSLs. This addresses
the experience of seasoned researchers [23] thatmany language developers do notwant to adopt newnotations for defining
DSLs. Moreover, using annotations for the specification of the productions saves effort, because the syntax and semantics of
an EDSL is defined in one artifact and not spread across different artifacts that use different languages.

Quotation. Given that our approach builds upon homogeneous EDSLs, the user generally does not have to quote DSL
expressions. The fact that the EDSL user can omit quotations is an important advantage of homogeneous embeddings.
Typically, when integrating concrete syntax of heterogeneous EDSLs into the host, quotation is used in order to delimit
expressions of EDSLs and host. Quotationmakes it simpler for a combined parser to recognize fromwhich of these languages
an expression originates. While quotationmakes the task of the parser easier, quotes imply additional work for the user and
even may confuse reading and understanding the source code.

In our approach, the developer can voluntarily define a quotation expression as part of an EDSL, because—even for
heterogeneous EDSLs—expressions are often well-defined in a certain context. Therefore, the decision if an EDSL should
use quotations for embedding is left to the language developer, as quotation is often not necessary.

However, there are cases where a language developer may require to control the integration between an EDSL and a host
language. One common reason is to precisely define the scope of an EDSL expression. For example, in Listing 7, in Line 2, the
EDSL expression is quoted using #sql{...}.6

In our approach, quotations are only necessary in case of EDSL keywords that could be misinterpreted or in case a
language developer wants to restrict the scope of identifiers. Quotations are directly supported by our approach and do
not require special support. It is sufficient to define another @DSLMethod annotation that defines a production regarding
the quotation (cf. Listing 8 Line 3).

5 Developers can turn off using embedded expressions at the top level (i.e. Statement) of the host grammar by setting the element topLevel=false.
6 #sql{...} is not a valid statement in the host language. When a language end user uses a quotation, the end user explicitly escapes from the host

language and opens up a scope in which SQL expressions can be used.



622 T. Dinkelaker et al. / Science of Computer Programming 78 (2013) 615–632

1 println "Registered people:"
2 Map[] result = #sql{SELECT Name,Age FROM People}
3 result .each{ Map row −>
4 println "Name: ${row.Name} Age:${row.Age}"; }

Listing 7. An Embedded SQL program in Groovy.

1 interface ITinySQLWithQuotation extends ITinySQL {
2

3 @DSLMethod(production="#sql{__p0__}")
4 Map[] quoteSqlStmt(List<Map> map);
5 }

Listing 8. The interface of TinySQLwith Quotation.

As it is common for homogeneous embedded DSLs, the types used by the EDSL and the types of the host language are
often directly compatible. For example, in Listing 5 the type of the DSL expression has the type as expected by the host
language program. However, in general, it is not safe to assume that the types of the EDSL and the types used by the host
language program or other EDSLs are compatible. In this case, it is necessary to extend the interpreter (cf. Listing 8) and to
implement the method declared in Line 4 to perform the type conversion of the value. As in the previous case, we could
directly reuse the standard functionality of our approach and no special support is needed.

Configuring the embedding. The presented @DSLMethod annotation offers an efficientmechanism to define concrete syntax
for EDSLs that satisfies many needs. But, to cope with special requirements, advanced configuration mechanisms are
provided in the form of several optional annotation parameters that enable developers to adjust the default conventions
to their needs. For example, the parameter waterSupported=false disables island grammars while parsing an
EDSL statement. This deactivates tolerant parsing, which restricts our approach to only accept complete grammars.
The parameter whitespaceEscape=" " changes the whitespace character used in production parameters from
the underscore to the empty space. This allows the developer to define the concrete syntax without underscores, e.g.
@DSLMethod(production="SELECT p0 FROM p1"), which may further improve the comprehension of the concrete
syntax defined in a production element. The element stringQuotation="’" changes the string quotation character,
which by default is ‘‘"’’.

5.3. Compiling DSL programs

Fig. 3 gives an overview of the compilation process that transforms programs in concrete syntax into host syntax. This
process is explained in the subsequent paragraphs.

Starting the compilation process. The compilation process starts (Step 1), when the DSL end user saves a file in the IDE that
contains expressions in concrete DSL syntax. To specify the EDSLs used in a source file users can use a file extension that
ends with dsl. E.g., file1.sql.dsl uses sql to specify that the TinySQL DSL is used. Alternatively, users can use the
annotation @EDSL to specify the used languages. The annotation’s elements determine the concrete EDSLs. For example,
the annotation @EDSL(sql,expr) specifies that the sql and expr DSLs are used.

Extracting grammars using reflection. For every EDSL the pre-processor looks up the EDSL interface (Step 2a) from the config-
uration. Next (Step 2b), the pre-processor uses introspection [24] to look up all declaredmethods in the EDSL’s interface. From
the interface annotation, the pre-processor looks up the host language of the EDSL and loads the host grammar (Step 2c).
From meta-data provided in the method signatures and their annotations, the pre-processor extracts the EDSL grammar
(Step 2d).

Creating a combined grammar. Next (Step 3), the pre-processor tries to create the composite grammar by combining the host
grammar with the grammars of all specified EDSLs. Before that, the grammars are checked for possible conflicts. Currently,
we build the union of all productions defined for the host language and all EDSLs. For example, the combined grammar for
parsing TinySQL embedded in Groovy contains all productions defined in Listing 2 and Listing 9. As long as two EDSLs do
not define two productions that have exactly the same terminals and non-terminals the pre-processor can distinguish them
and will call the correct method of the homogeneous embedded DSL.

Parsing into forest of ASTs. When parsing (Step 4) the source code, we create a forest of all possible ASTs of the source
code using the combined grammar. In the forest, every AST node is associated with the list of characters from the input
stream and the corresponding production that has recognized the characters. This forest contains only valid ASTs, but due
to ambiguities—in particular in the presence of island grammars—there are several possible ASTs under which the DSL file
can be recognized by the parser.
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Selecting one AST in concrete syntax. We use disambiguation filters [17] to select the AST with the well-defined execution
semantics. Therefore, we filter the forest of ASTs (Step 5) and select only one from it (Step 5b). To find the right AST, we take
both the syntactic and the semantic information into account that is defined in the EDSL interface.

The filtering always prefers AST nodes associated with detailed productions over AST nodes with water productions.
Additionally, we perform semantic checks to eliminate invalid ASTs from the forest. For every subexpression passed to
another expression, the filter determines the corresponding production and method in the EDSL interface via introspection
(Step 5 a). This allows the filter to take into account the return type of the method that defines the semantic type of the
computation returned by this subexpression.

Transforming the AST to host syntax. In the transformation step (Step 6), the pre-processor uses all transformations in the
order they have been selected by the end user. The transformation rewrites every AST expression in concrete syntax into
its compromised syntax. After that the EDSL program is comparable to a program that would have been written using host
syntax.

Pretty printing, host compilation, and launching. After the AST has been transformed to the host language syntax (Step 7), the
AST is pretty printed into a file that only contains valid host language expressions. The pre-processor uses the unchanged
host compiler to compile this file to binary form (Step 8) and launches the binary (Step 9).

5.4. Enabling a new host language

To support a new host language, a language developer has to specify the parts of the host language’s syntax that are
relevantwhen embedding DSLs. This set contains themost important productions that are needed to syntactically recognize
boundaries of basic program structures in the host language. This typically includes: its syntax layout (white spaces and
delimiters), identifiers, type definitions, brackets, variable declarations, method calls, object instantiations, block structures,
and so forth. These productions are required to support embedding DSL expressions into programs written in the host
language.

To ease the definition of production rules, we provide special non-terminals. As discussed previously, we support the
categories: , ? and ! . Additionally, Id is for identifiers that match the regular expression [A-Za-z0-9_+]. For the
specification of partial grammar definitions, developers can use the water rule $water$ that matches arbitrary characters
but only when no other production matches.

For defining BNF-like custom productions, we provide an API. Language developers use this API to add new production
rules. For example, in case of Groovy, the developer only uses the API to define the productions listed in Listing 9. As
outlined previously, only the most important productions for recognizing the distinctive parts of Groovy’s syntax need to
be formalized. The grammar uses thewater rule (cf. Section 2) in line 11 to avoid having to define the complete grammar of
Groovy. Using the water rule allows statements of the host language and of the EDSL that have not been formalized to be
parsed.

1 SGroovy → Program
2 Program → Statements
3 Statements → Statement ? Statements | Statement
4 Name → Id Id ? "." ? Name
5 Type → rType | pType
6 pType → Name | MethodCall | ConstructorCall
7 Arguments → Type | Arguments ? "," ? Type
8 Application → "(" ? ")" | "(" ? Arguments ? ")"
9 MethodCall → Name ? Application

10 ConstructorCall → "new" Name ? Application
11 Statement → { ? Statements ? Statements } | $water$

Listing 9. Island grammar for Groovy.

Compared to approaches with a complete syntax definition, the integration of the host language provides fewer
guarantees, because many expressions will be parsed using the water rule. However, the language developer can always
specify more productions if desired. Conversely, the partial grammar requires far fewer productions to be formalized and is
sufficiently precise for most practicable purposes. When developing a new embedded DSL in a host language, the developer
imports the partial grammar for the language.

The pre-processing step performed by our approach requires that the developer provides three transformations which
operate on the EDSL’s AST: The first transformation rewrites every AST nodewith concrete syntax to an equivalent AST node
in compromised syntax. The second transformation adds bootstrap logic into the AST that will evaluate the DSL statements.
The third transformation pretty prints the AST into host language code.
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Basically, all transformations are Java classes that are visitors [25] that implement the interface ASTTransformation.
Each transformation can define a set of requirements on the AST under transformation. Before a transformation is applied,
all its requirements are checked for by reading the meta-data that is attached to the AST. A transformation can then add,
change, and remove AST nodes and the meta-data attached to these nodes. The transformation stores its assurances by
adding meta-data to the AST. Requirements and assurances allow the plug-in to validate the chain of transformations.

6. Implementation

Wehave implemented the proposed approach as an Eclipse plug-in called TigersEye. Our pre-processor is an incremental
project builder that can be integrated with every project’s build process. In the following, we give a brief overview of
TigersEye.

6.1. Implementing the pre-processor as a project builder

Thedevelopedpre-processor is host language independent. As a proof of concept, TigersEye supports twohost languages:
Groovy and Java. The only requirements of TigersEye are that the host language compiles to Java Bytecode and that it is
possible to extract meta-data from an EDSL implementation, e.g., provided by means of annotations. These requirements
are met by most modern languages, such as C#, Scala, Smalltalk.

Using the current version of TigersEye, language developers can develop embedded DSLs (EDSLs) using Groovy or Java.
Using Java reflection, we introspect EDSLs to extract the EDSL’s meta-data, such as information about the production rules
and the transformations. The extracted partial grammar is made accessible as a set of first-class objects. When a program
uses several EDSLs, the pre-processor first composes the EDSLs’ grammars and meta-data.

If multiple EDSLs are used, TigersEye always creates the union of grammars of the composed languages. To resolve
syntactic conflictswe have implemented disambiguation filters [17]. Our evaluation has shown that this support is sufficient
to resolve syntactic conflicts.

Our parser implementation uses the Earley algorithm [16], which can handle all types of CFGs. It directly uses the
grammar of the EDSL and host language as supplied by the language developer. An important advantage is that the generic
parsermakes the grammar available as a first-class object during the transformation process. This enables the pre-processor
to extend and compose grammars of the host language and of the embedded DSLs.

Our implementation of the Earley algorithm adds support for island grammars [10] as outlined next. The standard Earley
algorithm has three steps that are continuously repeated for every character, namely (1) scan, (2) predict, and (3) complete.
To support island grammars, we extended the scan step. The new scan step first tries to accept the next character using the
explicitly defined productions. Only if no production accepts the next character, we use the water rule to recognize it as
water. Each parse step that is stored as a so-called Earley item in the parser chart is associated with the character recognized
in the step. After parsing, the chart provides all information for the full forest of ASTs.

To represent ASTs and to implement term rewriting, we use ATerms [26]. ATerms unify several term formats, optimize
storage throughmaximal subterm sharing, and allow language-neutral exchange. To implement custom transformations—as
extensions of our pre-processor—the language developer also has to use ATerms. The transformation steps are: (1) the pre-
processor translates the Earley chart to ATerms, (2) then the pre-processor uses the ATerms’ pattern matching facilities to
perform transformations on the ASTs, after that (3) the pre-processor uses the ATerm’s ASTs to generate the host language
code.

Note that the project builder outputs generated host language code into a special folder, e.g. by default
‘‘./tigerseye-bin’’. From this folder, the Groovy or Java compiler will further process the generated code in order to
compile it to Java bytecode into the standard ‘‘./bin’’ folder.

6.2. Implementing convenience IDE services

For convenient usage of TigersEye, we have implemented a set of convenience IDE services which are discussed in
the following. In general, an end user first has to download and install an EDSL implementation. EDSL implementations
are generally deployed as Eclipse plug-ins that extend a well-defined extension point. After installation, the language
implementation is registered with TigersEye’s EDSL registry and can be configured using a generic (language independent)
Eclipse preferences pane. It is, e.g., possible to (de)activate an EDSL.

6.2.1. Syntax highlighting
TigersEye provides an editor that supports syntax highlighting for source files that use one ormore EDSLs. Before opening

a file, the editor first extracts the set of used languages. The editor automatically detects the used languages if the source file
name’s extension, which is encoded as ‘‘<filename>.<edsl-key>.dsl’’, contains the unique key of the corresponding
EDSL. Alternatively, if the EDSL programuses the special@EDSL(<list of EDSLs>) annotation, the editor extracts the set
of EDSLs’ keys from this annotation. Next, it loads all selected EDSLs and extracts all reserved keywords of these languages.
Finally, when opening the file, the editor highlights all corresponding keywords.

Using the registry, the end user can further configure the syntax highlighting.
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Table 1
Number of grammar rules that need to be specified to provide the concrete
syntax.

EDSL Complete grammar Island grammar Savings (%)

TinySQL 6 1 83
BNF 9 9 0
State machines 10 2 80
Simple logo 11 1 91
JSON 27 8 70

6.2.2. Launching
For launching an EDSL program, an end user can invoke ‘‘Runs as. . . ’’ from Eclipse. The launcher ensures that the builder

has pre-processed all EDSL files and will run the pre-processed and compiled EDSL program.

6.2.3. Debugging
Currently, TigersEye only provides basic support for debugging EDSLs with compromised syntax. It is only possible to

consider ‘‘library’’ calls as statements in the language and to step over them during debugging.
In the implementation of the current Eclipse prototype, debugging is only supported for EDSLs that do not use concrete

syntax. The pre-processing step necessary in case of EDSLswith concrete syntax is not compatiblewith the current debugger
implementation. The necessary information that relates some piece of EDSL codewith the code created by its transformation
to host syntax is not yet available to the debugger.We are, however, confident that in the futurewe can extend the debugger
to extract the necessary information from the compiled files and the EDSL’s meta-data to fully support debugging of EDSLs
code.

7. Evaluation

We have evaluated our approach w.r.t. four aspects. Section 7.1 measures the costs for EDSL grammar specifications.
Section 7.2 measures the costs for adding support for new host languages. Section 7.3 validates the approach by means of
case study. Finally, Section 7.4 discusses the quality of the tooling.

7.1. Costs of EDSL grammar specification

To evaluate our approach, we have implemented several existing and experimental DSLs. We always started by
implementing a basic version of the DSLs without support for concrete syntax. After that, we incrementally added
annotations to their implementations to support the domain’s syntax.

We have implemented the following four small DSLs: (1) a BNF dialect to specify CFGs, (2) TinySQL, (3) a DSL for defining
state machines, (4) some dialects of the Logo language for teaching programming. As a real-world example, we have also
implemented support for JSON (Java Script Object Notation).7 The latter DSL currently supports values with the following
types: string, array or object.8 In all cases,wewere able to provide the concrete syntax of the particular domain. Furthermore,
the effort necessary to provide the concrete syntax for an EDSL is practically eliminated as shown in Table 1. For example,
to provide the concrete syntax for TinySQL, it was sufficient to specify a single grammar rule (production) while a complete
specification would require the specification of six productions. We expect that for other—in particular larger—languages
even more savings can be expected if it is possible to piggyback on the concrete syntax definitions of the host language.

7.2. Costs for new host languages

The integration of the EDSLs with the host languages also requires only negligible effort. For Java and Groovy, it was
sufficient to specify only 19 productions each. As elaborated in Section 5.4, to parse the host languageswith island grammars,
we had to define only the most important productions that recognize the host languages’ basic syntactic structure (see
Table 2).

7.3. Case study — Embedding JSON into Groovy

To validate our approach, we have embedded most of JSON (cf. Section 7.1) into Groovy. JSON is a human-readable data
exchange format that is a strict subset of the JavaScript programming language. For example, Listing 10 shows the definition
of an anonymous object with four properties (key/value pairs). We have chosen JSON, because it is a non-trivial real world
language that is widely used.

7 http://www.JSON.org/.
8 Our current implementation could be extended to support more types.

http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
http://www.JSON.org/
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Table 2
Number of grammar rules that need to be specified to enable host language
integration.

Host language Complete grammar Island grammar Savings (%)

Java 1700 19 98.9
Groovy 950 19 98.0

1 {
2 "Title" : "Groovy in Action" ,
3 "Authors" : [ "Dierk Konig" , "Andrew Glover" , "Paul King" ,
4 "Guillaume Laforge" , "Jon Skeet" ] ,
5 "Publisher" : "Manning" ,
6 "ISBN" : "9781935182443"
7 }

Listing 10. A JSON object.

To get a first idea of the effort necessary to embed JSON using our approach, we compare the effort required to specify
the grammar using island grammars with the effort using a standard formalism such as BNF. As shown in Listing 12, using
our island-grammars-based approach requires the specification of only six @DSLMethod annotations when compared to
the 27 productions that are necessary in case of the standard JSON grammar (cf. Listing 11).

1 SJSON → object
2 object → "{ }" | "{" members "}" // 2 productions
3 members → pair | pair "," members // 2 productions
4 pair → string ":" value
5 array → "[ ]" | "[" elements "]" // 2 productions
6 elements → value | value "," elements // 2 productions
7 value → string | object | array //3 productions
8 string → """" | """ chars """
9 chars → char | charchars // 2 productions

10 char → ... // assuming 1 production that recognizes 1.1 Mio Unicode v6.1 chars
11 char → ... // 9 productions for control chars

Listing 11. The JSON grammar [27].

Furthermore, embedding JSON into a host language is not without challenges and these challenges can be regarded as
representative for those challenges that arise when reasonably large languages are embedded into some host language.
As shown in Listing 11, JSON’s grammar is small but makes heavy use of characters—in particular curly braces and square
brackets—that are also used by many potential host languages. Such situations can lead to complex syntactic ambiguities.
For example, in Line 4 of Listing 13 a variable (book) is defined which is assigned a JSON object. However, while parsing the
program this cannot immediately be decided. The opening curly bracket in line 4 could be the beginning of a definition of
a JSON object or a Groovy closure. To correctly disambiguate such situations, the syntactic categories of the surrounding
expressions need to be taken into account. In this case the enclosed sub-expressions are all JSON expressions and therefore
the enclosing curly brackets are considered as belonging to the JSON DSL. After disambiguation, JSON expressions are
rewritten to method calls that construct a JSON object in compromised syntax.

7.4. Quality of the tooling

Furthermore, the effort that is necessary to support concrete syntax for a homogeneous embedded EDSL that can be used
across different host languages is reduced. In case of the four discussed DSLs, no effort was necessary to directly support
concrete syntax for the discussed DSLs when we embedded them in Java (they were first embedded into Groovy.) This,
however, requires that we can reuse the same DSL interpreter for the new target host languages and that support for the
target languages is readily available in our pre-processor. If this is the case, it is in general only necessary to adapt the EDSL’s
grammar to the new host language grammar. Due to our use of island grammars and the syntactical similarities between
Groovy and Java, no adaptation was necessary.

Though our current approach already provides good support for incrementally developing embedded DSLswith concrete
syntax, the performance is not yet optimized. The runtime requirements of the used Earley algorithm are already high and
the added support for island grammars increases them further. Currently, parsing and transforming DSL programs of 500
effective lines of code takes approx. 10 s.
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1 @DSLClass(whitespaceEscape = " ") // does not count as a production
2 public class JsonDSL extends Interpreter implements IJsonDSL {
3 ...
4 @DSLMethod(production = "{ }")
5 publicMap object() { return new HashMap(); }
6

7 @DSLMethod(production = "{ p0 }")
8 publicMap object(JsonMap members) { returnmembers.toMap(); }
9

10 @DSLMethod(production = "p0 : p1", topLevel=false)
11 public JsonMap pair(String string, Object value) {
12 return new JsonMap(string, value);
13 }
14

15 @DSLMethod(production = "p0 : p1 , p2", topLevel=false)
16 public JsonMap pairs(String string, Object value, JsonMap pairs) {
17 return new JsonMap(string, value, pairs);
18 }
19

20 @DSLMethod(production = "[ ]")
21 public List array(JsonArray elements) {
22 return new LinkedList();
23 }
24

25 @DSLMethod(production = "[ p0 ]")
26 public List array(JsonArray elements) {
27 return Arrays.asList(elements.toArray());
28 }
29

30 @DSLMethod(production = "p0", topLevel=false)
31 public JsonArray array(Object value) {
32 return new JsonArray(value, null);
33 }
34

35 @DSLMethod(production = "p0 , p1", topLevel=false)
36 public JsonArray elements(Object value, JsonArray elements) {
37 return new JsonArray(value, elements);
38 }
39 }

Listing 12. Excerpt of the JSON implementation.

1 def closure = { x −> x ∗ x }
2 println "Result of execution closure: " + closure.call (5); // prints 25
3

4 def book = {
5 "Title" : "Groovy in Action" ,
6 "Authors" : [ "Dierk Konig" , "Andrew Glover" , "Paul King" ,
7 "Guillaume Laforge" , "Jon Skeet" ] ,
8 "Publisher" : "Manning" ,
9 "ISBN" : "978−1932394849"

10 }
11 println book; //prints book as string

Listing 13. A JSON object embedded into Groovy code.

8. Comparison with related work

Table 3 shows a comparison of our approach with related work on EDSLs, which will be further elaborated in the next
section. We compare the embedding approaches w.r.t. the host languages that are supported out of the box, if the approach
is host language independent, and, if so, if the grammar of the complete host language has to be available. Furthermore, we
compare the ‘‘embedding style’’ and if the approach supports ‘‘concrete syntax’’, whether a complete specification of the
DSL’s grammar is required. Finally, we compare the class of languages supported by the approach. We classify our approach
as a hybrid embedding approach. Since TigersEye is a pre-processor that uses homogeneous embedded DSLs.
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Table 3
Comparison language embeddings’ support for concrete syntax.
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. . .with compromised syntax

Pure embedding [4] Haskell homo. no X

Embedded compiler [28] ML hetero. no X

Jargons [29] Scheme homo. no
DSL2JDT [30] Java homo. no X

Polymorphic embedding [31] Scala homo. no X

Reflective embedding [22] Groovy homo. no X

. . .with concrete syntax

MetaBorg [6] Java, . . . X cmpl. hetero. yes cmpl. X CFG
TXL [7] Java, . . . X cmpl. hetero. yes cmpl. LL(*)
Converge [2] Converge homo. yes cmpl. CFG
π [8] π homo. yes cmpl. CFG
Helvetia [9] Smalltalk homo. yes cmpl. X PEG
SugarJ [32] Java cmpl. homo. yes cmpl. X CFG

TigersEye Java, Groovy, . . . X prt. hybrid yes prt. X X CFG

8.1. EDSL approaches with compromised syntax

The homogeneous EDSL approaches pure embedding [4], Jargons [29], DSL2JDT [30], polymorphic embedding [31], and
reflective embedding [22] do not use meta-programming and do not support concrete syntax.

The heterogeneous EDSL approach of embedded compilers [28] uses meta-programming in the ML language. However,
for end user programs, there is no support for concrete DSL syntax, because programs must be encoded in ML.

A common feature of all above approaches except Jargons is that they support separate compilation. Hence, it is possible
to independently develop the EDSLs and to distribute them in binary form as in case of TigersEye.

8.2. Heterogeneous EDSL approaches with support for concrete syntax

Heterogeneous approaches, e.g., MetaBorg [6] and TXL [7], first supported the embedding of DSLs with concrete syntax.
Compared to TigersEye both, however, require that developers provide the language implementations as source code and
therefore do not support separate compilation.

MetaBorg [6] is the most mature approach with respect to embedding DSLs with concrete syntax [2]. MetaBorg uses
Stratego/XT to specify syntax definitions and AST transformations. Given the complete syntax definition of the EDSL and
the host language, MetaBorg generates a pre-processor. This pre-processor compiles programs in concrete syntax to host
language programs that use a library that implements the DSL’s functionality. MetaBorg is heterogeneous. Stratego/XT
supports island grammars [23], but MetaBorg does not use them for defining grammars of EDSLs. Like our approach,
MetaBorg is host-language independent, but currently only supports Java. For example, to support Groovy the complete
Groovy grammar has to be (re-)written in SDF which corresponds to approximately 950 of our BNF-like productions (this
estimation is based on a detailed analysis of the Groovy ANTLR grammar). To enable parsing Java and Groovy files with
embedded DSL syntax we only needed to specify a few productions for Java resp. Groovy. In contrast to TigersEye, the
definition of theDSL’s concrete syntax and semantics uses different languages – the Stratego language and the host language.
This heterogeneity makes MetaBorg less uniform than TigersEye.

TXL [7] is an heterogeneous embedding approach that can rewrite embedded programs into any target language similar
to MetaBorg. However, TXL only supports LL(*) grammars and there is no special tool support.

8.3. Homogeneous EDSL approaches with support for concrete syntax

Next, we discuss homogeneous embedding approaches that use special host languages to support concrete syntax:
Converge [2], π [8], Helvetia [9], and SugarJ [32]. A common difference of all three approaches compared to TigersEye is that
these approaches always require language developers to define the complete syntax of each EDSL. However, a commonality
is that all approaches support multiple embeddings.
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Converge uses compile-time meta-programming to enable access to AST nodes in programs. Programs are allowed to
rewrite themselves during compilation. The language developer specifies the complete grammar in a BNF-like DSL – from
which an Earley parser is generated. The developer uses Converge to implement a transformer that rewrites AST nodes with
concrete syntax to plain Converge expressions. Converge does not provide specialize tool support for DSL syntax and it does
not support separate compilation.

The π language uses runtime meta-programming that enables programs to access their AST at runtime. The developers
define all DSL expression types as so-called patterns. Each pattern recognizes a piece of the concrete syntax and gives it a
meaning – an interpretation in the π language. In π , there is neither tool support nor separate compilation.

In Helvetia [9], Smalltalk is used to create homogeneous embedded DSLs. The language developer uses Smalltalk to
implement a complete parser using a parser combinator library and to specify rewrite patterns on AST nodes. Helvetia
parses DSL code and rewrites it to Smalltalk code.

SugarJ [32] extends the Java language with a special import statement to import the concrete syntax of an embedded
DSL. In SugarJ, developers define language extensions for Java in the Stratego language, and there is a special Eclipse plug-in
that rewrites EDSL programs with a concrete syntax to Java plain code. SugarJ has the same restrictions as MetaBorg, and
therefore does not support separate compilation.

Converge, π , Helvetia, and SugarJ are not host language independent, thus they cannot be used to integrate EDSLs into
other host languages than their own host language. By relying on special features of their host language, term rewriting and
DSL execution is homogeneously integrated. In contrast, TigersEye does not require special host language features. We use
a pre-processor for transformation and for bootstrapping the EDSL syntax and semantics into the host program.

8.4. Language workbenches

There are various language workbenches that target expert developers for implementing languages with tool support
in a special environment. For Java, there are JetBrains Meta-Programming System (MPS) [33], openArchitectureWare [34], IDE
Metatooling Platform (IMP) [35], and Spoofax [36]. For C#, there is Intentional Software [37]. With respect to providing tools
for languages, workbenches have a similar motivation like EDSLs. However, in contrast to EDSLs, workbenches require
the language developer to follow an approach-specific process to define syntax and semantics. TigersEye has a different
focus since it targets programmers who do not have to be experts in a certain syntax formalism. Developers do not need
to learn a new meta-language, they only need to know the object-oriented programming language and our conventions
(i.e. annotations),which only define new rules inside theOO formalismand in oneuniformmodel. Unlikemanyworkbenches
that are heterogeneous and non-uniform, TigersEye supports homogeneous EDSLs that are uniform. Because the host
compiler is no external tool, there is no conceptual gap between EDSLs and host.

Among these approaches, Spoofax is most relevant because it provides explicit meta-languages for combining multiple
languages in a way that resembles composing EDSLs in TigersEye. In Spoofax [36], developers implement languages using
the Stratego language. Given a language’s implementation Spoofax then generates Eclipse plug-ins to provide specialized
IDE support. However, for every new combination of languages, a language developer must generate a new plug-in. A
limitation of the missing support for separate compilation is that, when there are multiple language combinations that use
the same constituent languages, the plug-in generator repetitively generates and compiles the same code for the constituent
languages. Although generated code of the constituent languages could be re-used, Spoofax currently does not support this.
Generating language-specific code in a way such that it can be re-used in different language combinations would require
fundamentally changing the implementation of the way Spoofax generates code [38]. More severely, when the number of
used languages grow, the size of the generated code grows exponentially. This can lead to plug-in binaries with the size of
a Gigabyte and more [39]. In TigersEye, the size of the binary code grows liberally with the number of used languages.

Jetbrains MPS also supports combining multiple languages, but is otherwise quite different from our approach.
Specifically, developers do not design text-based languages. Instead, developers have to use a visual cell-based editor which
maps programs to executable code, e.g. to Java. There is little information available about MPS, which makes it hard to
compare.

8.5. Extensible compilers

Extensible compilers, such as Polyglot [40] and JastAdd [41] could also be used to integrate a DSL in a host language.
However, in contrast to TigersEye they have a different focus. First, they focus on language extensions for a particular
base language. TigersEye on the other hand focuses on embedded DSLs that will be integrated with a host language as
an extension and where the host language may not even be designed or implemented with extensibility in mind. Second,
instead of application developers, they target compiler experts. In general, extensible compilers have a lack of tool support,
thus they do not support syntax highlighting or other IDE services.

8.6. Grammar inference

Grammar inference algorithms generally build grammars by either analyzing a set of existing programs or by repetitively
asking an oracle. Hrncic et al. [42], for example, use a grammar inference algorithm that uses evolutionary learning combined
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with local search to derive EDSL grammars from positive and negative examples. As in our case, the derived grammar uses
island grammars as the underlying technique and the overall goal is also to minimize the costs associated with creating a
grammar specification. However, when compared to their proposal, we address the expression of the EDSL’s syntax and also
the implementation of the EDSL’s semantics. The latter in particular facilitates resolving syntactic ambiguities using type
information.

9. Conclusions

In this paper, we have presented a new approach that significantly reduces the effort necessary to enable concrete syntax
for embedded DSLs. The basic idea is to enable language developers to incrementally specify a DSL’s syntax using island
grammars. When compared to related work, the main advantage of our approach is that only parts of a DSL’s concrete
syntax need to be specified. This has four main implications: First, it is only necessary to specify a DSL’s concrete syntax for
those parts where the host language’s concrete syntax conflicts with the domain syntax. This reduces the effort necessary
for specifying the DSL’s grammar. Second, our approach supports the incremental definition of a DSL’s concrete syntax,
which helps to reduce the initial effort necessary when developing an EDSL. Third, the implementation of an embedded
DSL can be—to a very large degree—host-language independent. This facilitates reuse of EDSL implementations if the host
language compiles to a bytecode representation such as Java or CIL bytecode. Fourth, developers can separately compile
EDSL implementations and distribute them as bytecode. Later on, end users can download the binary versions of EDSLs and
compose them.

To evaluate the approach, we implemented an Eclipse project builder to embed several DSLs into Java and Groovy and
compared the costs with related work.

In future work we will try to address the performance issues related to the use of an Earley parser with support for
island grammars. Further, we plan to make the annotations more practicable, e.g. by using type annotations (JSR 308) and
by learning lessons from other non-embedded approaches that use annotations [43]. Currently, we are also working on
syntactic and semantic analyses of DSLs to provide special guarantees. Better debugging of EDSLs with concrete syntax is
also a possible direction for future work.
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