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ABSTRACT
Developing software from reusable libraries lets developers
face a security dilemma: Either be efficient and reuse li-
braries as they are or inspect them, know about their re-
source usage, but possibly miss deadlines as reviews are
a time consuming process. In this paper, we propose a
novel capability inference mechanism for libraries written in
Java. It uses a coarse-grained capability model for system
resources that can be presented to developers. We found
that the capability inference agrees by 86.81% on expecta-
tions towards capabilities that can be derived from project
documentation. Moreover, our approach can find capabili-
ties that cannot be discovered using project documentation.
It is thus a helpful tool for developers mitigating the afore-
mentioned dilemma.
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F3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis

General Terms
Design, Languages, Security, Reuse, Software Engineering
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1. INTRODUCTION
The efficiency of software development largely depends on

an ecosystem of reuse [4, 13]. Numerous software libraries
are available that solve various problems ranging from nu-
merical computations to user interface creation. The safe
use of these libraries is an exigence for the development of
software that meets critical time-to-market constraints.

However, when including software libraries into their prod-
ucts software developers entrust the code in these libraries
with the same security context as the application itself re-
gardless of the need for this excessive endorsement. For

instance, a system that makes use of a library of numeri-
cal functions also enables the library to use the filesystem
or make network connections although the library does not
need these capabilities. If the library contains malicious code
it could make use of them.

In commonly used languages like Java no effective mech-
anism to limit or isolate software libraries from the applica-
tion code exists. So developers face a dilemma: Either trust
the component and finish the project in time or be secure,
review the library’s source code and possibly miss deadlines.

We propose to consider this excessive assignment of au-
thority as a violation of the Principle of Least Privilege [22].
The principle states that every program should operate un-
der the least set of privilege necessary to complete its job.
In order to alleviate the described dilemma, we introduce
an effective mechanism in this paper to detect the actual
permission need of software libraries written in Java.

Drawing inspiration from Android, we construct a capa-
bility model for Java. It includes basic, coarse-grained ca-
pabilities such as the authority to access the filesystem or
to open a network socket. As Java programs by themselves
cannot communicate with the operating system directly, any
interaction with those capabilities has to happen through the
use of the Java Native Interface (JNI). By tracking the calls
backwards through the call graph, we produce a capability
set for every method of the Java Class Library (JCL) and by
the same mechanism towards methods of a library. We can
thus effectively infer the necessary capabilities of a library
using our approach. We can also infer the subset of these
capabilities used by an application, as it may not use every
functionality supplied by the library.

As the precision of our approach is directly depending
on the precision of the algorithm used to calculate the call
graph of the library, we took several measures to compute
a reasonably precise call graph while not compromising the
scalability of the algorithm too severely.

We evaluated our approach by comparing our results against
expectations derived from API documentation. We found
that for 70 projects from the Qualitas Corpus [29], that we
evaluated against, actual results exceeded expectations and
produce a far more accurate footprint of the projects ca-
pability usage. Thereby, our approach helps developers to
quickly make informed decisions on library reuse without the
need for manual inspection of source code or documentation.

In our pursuit to mitigate the software developer’s dilemma
w.r.t. library reuse, we thus contribute the following in our
paper:
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• an algorithm to propagate capability labels backwards
through a call graph (presented in Section 3.3),

• a labeling of native methods with their necessary ca-
pabilities to bootstrap the process (in Section 3.2),

• a collection of efficient analysis steps to aid the pre-
cision of common call-graph algorithms (explained in
Section 3.3),

• an evaluation of the algorithm (Section 4) against ex-
tracted capability expectations from documentation.

We furthermore motivate our work in more detail in Sec-
tion 2. An overview over related work is given in Section 5.
Section 6 provides concluding remarks and discusses inter-
esting challenges.

2. MOTIVATION
One of the major drivers of efficient software development

is the ability to reuse parts of software systems in the de-
velopment of other systems in the form of software libraries.
Software developers can thus concentrate on the key require-
ments of their programs and reuse functionality that is com-
mon to many software systems. Developing software this
way leaves more time for the creation of new functionality,
mitigates rewriting already existing functionality and also
makes errors less likely as functionality in form of libraries
gets used more often than their individual counterparts. It
has been observed that programming with library reuse can
speed up software development by over 50% [4]. Therefore,
library reuse is an important part of an efficient software
engineering process.

The concept of library reuse has been adopted by many
different programming environments from C and C++ over
Java which ships with the Java Class Library to academic
languages like Racket or even embedded languages. Li-
brary reuse is part of software development processes from
the smallest wearable devices to the largest cloud-based so-
lutions. For instance, the Java Runtime Environment is
shipped with multiple libraries that are not part of the run-
time but can be used by Java programs. Their functionality
includes graphical user interfaces, cryptography and many
more. By providing the functionality in form of libraries the
Java platform gives developers the ability to use the func-
tionality without implementing it first or leaving them out
of the program if not needed. The C standard library is
probably the most used software library worldwide. It is
loaded in basically any system, although in different ver-
sions, from mobile devices, desktop or laptop computers to
cloud computing environments.

However, in order to be efficient developers rely on the de-
scribed and observed behavior of the libraries. The source
code of the libraries hardly ever gets reviewed. Even in open
source projects the rigor of code reviews is quite lax [3]. Ex-
amples of this can be seen in the quite prominent Heart-
bleed incident [7], where the server-side implementation of
OpenSSL had a major programming error that allowed clients
to read the server’s complete memory in 64kb blocks ex-
posing inner state that can be and was used against the
server. Although being a de-facto standard with a large user
base the error was not discovered through a code review but
through an exploit. What makes this exploit particularly
interesting is that the error was in code not necessary for

the pure functionality of SSL connections but for a conve-
nience heartbeat functionality. Developers using server-side
OpenSSL never opted in to such functionality.

As library code runs in the same security context as ap-
plication code a developer automatically entrusts the library
code with the same privileges the end user has provided to
the application. She implicitly transfers the users trust to-
wards her to the developers of the library. Thus, any capa-
bility the complete application may use is available to library
code as well.

Moreover, consider a scenario where a central point for li-
brary delivery like Maven Central gets compromised. Many
applications may be shipped with malicious versions of li-
braries and be delivered to end users without noticing.

Considering all the aforementioned problems it is rather
surprising that developers still blindly trust libraries. Be-
sides code reviews, that may not be possible for a closed
source component, very little tool support for developers in
need to make the right choice of library is available. De-
velopers can use tools like FindBugs [16] to check for well-
known patterns of bad behavior in a library, but will only
find instances of known problems not a full footprint of the
library’s critical resource usage.

As library reuse is an essential and widely adopted prac-
tice for software development it is essential that developers
have access to trustworthy software libraries. Trust in those
libraries can be gained by inspecting them manually – which
is often tiresome – or with bug detection tools – which is of-
ten not helpful. Hence library code runs within the same
security context as the application code and it is seldom
under the scrutiny of a code review, it may pose a signifi-
cant risk when rolling out libraries as part of an application.
Thus, new methods to determine the actual usage of system
capabilities of software libraries are needed.

Therefore, in this paper, we present an approach to capa-
bility inference for software libraries written in Java. In the
following sections we present our approach and the boot-
strapping necessary for it in detail.

3. CAPABILITY INFERENCE
We use the OPAL framework [8], an extendable frame-

work for static analysis of Java bytecode based on abstract
interpretation, to perform all static analyses relevant for our
inference algorithm. After giving an overview of our ap-
proach, we will discuss it in detail.

3.1 The Approach in a Nutshell
The purpose of the analysis presented in this paper is to

uncover the capability footprints of software libraries written
in Java. Making them aware of these footprints helps devel-
opers to make informed decisions as whether to integrate a
library into their application based on how it uses system
resources. For instance, consider a library for the decoding
and display of images. An application developer considering
to use this library expects the library to use functionality
for reading from the filesystem and for displaying images
on the graphical user interface. However, it is unlikely that
this library needs to perform operations to play sounds or
to open network sockets. If the library does use these capa-
bilities, a developer might want to invest more time into the
inspection of the library.

In order to access system functionalities a library writ-
ten in Java will have to make use of the Java Native Inter-
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Figure 1: Architectural layers for Java libraries

face (JNI) either directly or through the Java Class Library
(JCL) (cf. Figure 1). Our analysis uncovers the use of sys-
tem capabilities through the JCL. It consists of three main
steps.

We first manually inspected all native functions of the
core part of the JCL. According to their name, implementa-
tion and documentation we assigned them capability mark-
ers manually.

These capability sets are then propagated backwards through
a call graph of the JCL and the library under test. Through
refinement and filtering steps on the call graph we ensure a
precise but practical result. In the example presented above
the native functions using the capabilities for the filesystem
and the graphical user interface are traced backward to li-
brary functionality (cf. Figure 2).

In a last step the results of the analysis are consolidated
to receive either a complete footprint of the library or a par-
tial footprint depending on the use of library functionality,
because only parts of the library may have been used in the
application. In our example from Figure 2, the union set
of all used capabilities in the library consists of the capa-
bilities for the filesystem and the graphical user interface
as expected, but it does not include capabilities for playing
sound and using network sockets. Developers can thus save
the time for an inspection of the library’s source code.

3.2 Bootstrapping
In Java, the capabilities considered in our case, are created

outside of the Java Virtual Machine and are reached only via
a call through the JNI (cf. Figure 1). As any system resource
like the filesystem, network sockets or the graphical user
interface is a matter of the underlying operating system –
when viewed from the Java side – this assumption naturally
holds. As libraries seldom bring their own native code, they
rely on the native functions and their wrapping functions
inside the JCL. Therefore, to calculate meaningful results for
arbitrary Java libraries it is necessary to first infer capability
usage for the JCL.

We identified 14 distinct capabilities presented in Table
1, whose usage we want to track. They represent different
critical resources that are accessible through the native part
of the JCL. The CLASSLOADING, DEBUG, REFLECTION and SE-

CURITY capabilities refer to internal resources of the JVM
used to achieve dynamic code loading, instrumentation, in-
trospection or securing code. Even if these capabilities are
not system resources, we decided to include them as they
represent authority to circumvent other mechanisms like in-
formation hiding, memory safety or even the security model.
For instance, using reflection it may be possible for a library

Table 1: Capabilities in our approach

capability #m description
CLASSLOADING 24 Definition and loading of

classes
CLIPBOARD 9 Access to the system clip-

board
DEBUG 5 Debugging instrumentation
FS 377 Access to the filesystem
GUI 449 Graphical user interface
INPUT 10 Retrieve values from input

devices
NATIVE 419 No specific facility, but calls

into native code
NET 274 Network socket access
PRINT 54 Print on physical printers
REFLECTION 78 Introspective access to ob-

jects
SECURITY 14 Influence the security mech-

anisms of Java
SOUND 36 Play or record sound
SYSTEM 126 Operating system facilities
UNSAFE 85 Direct memory manipula-

tion

to call into filesystem functionality although our analysis
does not recognize it, because the call graph we use to ex-
tract the information does not contain a respective call edge.
We also decided to include a marker capability (NATIVE)
for all native calls that do not access system resources (e.g.
java.lang.StrictMath.cos()). Although these functions
do not provide access to a capability, they still are native
functions with the possibility to read and write arbitrary
memory locations in the JVM heap. All other capability
names have been chosen w.r.t. the system resource they
represent.

To retrieve a list of all native method stubs of the JCL,
we use the OPAL framework. The core part of the JCL
is included in the rt.jar file shipped with the Java Runtime
Environment. Therefore, we limited our bootstrapping anal-
ysis to this file. All libraries that ship with the JCL are
based on the rt.jar and those that also have native code are
mainly concerned with graphical user interface display (e.g.
JavaFX). We implemented a simple analysis that collects all
methods with the ACC_NATIVE marker in the method_info

structure [18]. This corresponds to native methods in Java
source code. On the 64-bit version for Windows of the Open-
JDK version 7 update 60 this analysis returned 1, 795 meth-
ods.

We manually assigned each of these methods the set of its
capabilities. To assign the correct capabilities, we reviewed
the source code of the native implementation of the method.
We also took the naming and the documentation of the func-
tion into account, as they provide insight into its purpose.
Column #m in Table 1 presents the number of methods for
each capability in the result set of the bootstrapping process.
As some methods are annotated with more than one capa-
bility, the sum of these figures is higher than the number of
methods in the result set.
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Figure 2: Call graph with annotated capabilities

3.3 Building Capability Footprints
Our analysis propagates capabilities backwards from JCL

methods to the library’s API (cf. Figure 2). The propagation
consists of the following three major steps which are detailed
afterwards:

1. The call graph that includes the JCL and the analyzed
library is build.

2. The capabilities identified in the bootstrapping phase
are propagated backwards through the graph. As part
of the propagation, call edges in the call graph are fil-
tered that will result in excessively overapproximated
capability sets.

3. In the last step, either the complete footprint of the
library (e.g. {FS,GUI} in Figure 2) or a footprint based
on the usage context of the library is build.

Call Graph Construction Step.
We build the call graph using a variant of the VTA algo-

rithm that we implemented in OPAL. Compared to the orig-
inal VTA algorithm [26], the algorithm only propagates pre-
cise type information intra-procedurally and does not first
calculate a whole-program type propagation graph. However,
intra-procedurally the analysis is more precise as it uses the
underlying abstract interpretation framework and is there-
fore flow- and path-sensitive. This way we are able to con-
struct an equally precise call graph, but be more efficient at
the same time. To further increase precision, we added two
steps. First, we added a shallow object-insensitive analysis
of all final or private fields to OPAL to determine a more
precise type of the values stored in the respective fields than
the field’s declared type. Second, we added a basic data-flow
analysis of all methods that return a value to determine a
more precise return type than the declared one if available.
Both information is used during the call graph construction.
Overall, the number of call edges of the resulting call graphs
are comparable, but our VTA algorithm is more efficient
than the original one.

For the call graph’s entry points we use all non-private
methods and constructors, all static initializers and those
private methods that are related to serialization. The latter
are added to capture the implicit calls performed by the
JVM when serializing or deserializing objects.

Propagation Step.
In the bootstrapping phase, we manually assigned each

native method of the JCL the set of its capabilities. To de-
termine a library method’s capabilities, we propagate the ca-
pabilities through the call graph by traversing the call graph

backwards, starting with the native methods of the JCL.
While traversing the graph, we propagate the initial sets of
capabilities to compute the set of capabilities attached to
each method of the JCL and the library. At the end, each
method of the library is annotated with a set of its capabil-
ities based on the transitive native calls it performs.

Unfortunately, this näıve propagation of the capabilities
results in a hugely overapproximated capability distribution
as basically every method of the JCL would be annotated
with all capabilities. This is due to the fact that often no
precise type information for the receiver of a method call
is available, so all possible receivers have to be taken into
account by the analysis although these receivers are never
called.

For instance, if the toString() method is called by some
method and the runtime type of the receiver is unknown
and, hence, the upper type bound java.lang.Object needs
to be assumed, the call graph will contain 1, 304 edges1 for
this call.

These edges will propagate capabilities to methods that
will in practice never be reached. Hence, we filter these prob-
lematic edges during the capability propagation step. For in-
stance in the above example, it is rather unlikely that each
of these 1, 304 alternative implementations will be called in
practice from this call site. However, as all of these imple-
mentations are annotated with their respective capability
sets the method including the call site will be annotated
with the union set of all these sets. We decided for filtering
although it gives up soundness of the analysis by replacing
the overapproximation with an underapproximation. We ig-
nore calls to unlikely implementations and thus get a much
stricter capability propagation that is closer to runtime re-
ality. Alternatively a point-to analysis could have been used
to determine more exact receiver types, but as our approach
needs to scale up to the JCL such a costly analysis is not
permissible. We implemented two filters in our approach.

The first filter removes edges for method calls where the
receiver type is java.lang.Object. Listing 1 shows an ex-
ample where this filter effectively removes problematic call
edges. The method currentContent() calls toString() on
the field o of the receiver object. Although the field is ini-
tialized with the concrete type MyInt, the call cannot be re-
solved to the implementation in this type, because the field
is public and may be overwritten with an object of any other
type. This results in call graph edges to all implementations
of toString() of subclasses of java.lang.Object. Our fil-
ter removes these edges from the capability propagation.

1 public class A {
2 public Object o;
3

4 public A() { o = new MyInt(42); }
5

6 public String currentContent(){ return o.toString(); }
7 }

Listing 1: Example for inconclusive type information

The second filter handles a similar problem that occurs
with the use of interface types and abstract classes. Like
receivers, whose type cannot be refined more precisely than
java.lang.Object, receivers of interface and abstract types
also have a large number of subtype alternatives within the

1The toString method is implemented by 1, 304 JCL
classes.
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Table 2: Effect of filter application in OpenJDK

filter type call edges reachable methods
Without filter 2.068.946 102.896
Object filter 1.221.293 102.411
Abstract filter 1.974.261 101.656
Interface filter 1.322.949 98.728
Subtype filter 1.194.172 91.813
all filters 368.231 91.135

JCL. Again, the call graph algorithm does not have any
other choice than to include edges to all these alternatives,
resulting in a over-propagation of capabilities.

However, in this subtype filtering process we perform a
prefix match on the package name of callee and caller. We
only propagate capabilities for alternative edges that point
to a callee located in the same package as the caller, as we
assume that the most relevant implementations often reside
in the same package. For example, consider a call to the
compare method of the java.util.Comparator<T> interface
in some method of a class C. Further assume that the imple-
mentation of compare to which the call dispatches is inside
an anonymous class located inside C and is thus implicitly in
the same package as C. When detecting a call to the compare

method our filter only accepts implementations in the same
package, which in this case is only the one in the anonymous
class.

Without filtering, the call graph of the OpenJDK version 7
update 60 (Windows, 64bit) includes roughly 2M edges and
over 100k methods that transitively call into native meth-
ods. The exact figures are presented in Table 2. Applying
the first filter regarding receivers of type java.lang.Object,
will drop 800k methods (∼ 40%). When using abstract re-
ceiver types for the second filter, the considered edges for
capability propagation drop only to 1.9M , but when we ap-
ply the filter to interface type receivers, the number drops
to 1.3M edges. If we combine interface and abstract re-
ceiver types (named Subtype filter in Table 2), we have only
about 1.2M edges. Finally, when combining both kinds of
filters, we only consider about 370k edges. This reduces the
processed edges by 82% and the number of methods in the
inverse transitive hull by 13%.

As discussed before, overapproximation in the analysis
produces overly populated results in our approach. Due to
that we choose to filter, which has the subsequent effect that
we find a capability set of a given library that is closer to
the runtime situation. For instance, a simple call of the read
method and InputStream as receiver type would imply the
capabilities CLASSLOADING, SOUND, NET, UNSAFE, FS, SYSTEM,
SECURITY and GUI which are eight out of the 13 capabilities
in our model. In case of the more concrete type FileInput-

Stream, the call of read would only yield the FS capability.
Hence, we are underapproximating to that end that instead
of assuming that all call edges are possible, we only con-
sider edges where caller and callee are in the same package.
Furthermore, we decided to apply our filter mechanism only
for callees within the JCL as we did not find large sets of
alternative call edges inside libraries.

Result usage and reporting.
The last step in the analysis is the construction of a report

of the results. Depending on the developer’s needs we can

construct two different reports. First, by building the union
set over all methods of a library we can construct the com-
plete capability footprint of a library. Second, when taking
the usage context of a library into account, we can report
on the actual used capabilities as developers might not al-
ways use a library to its full extent and thus may not use
capabilities included in the complete footprint.

Beyond our motivating usage scenario, where this infor-
mation is displayed to the application developer to decide
on libraries to use, it may also be interesting in other situa-
tions. Considering the example in our motivation regarding
the Heartbleed incident, we could also display the difference
between the complete footprint of a library and the used
part. This can hint to features of a library that are unused
by the application, just as the heartbeat feature was not
used in the OpenSSL scenario. Also this information could
be used to slice the library down to the used part in order
to prevent unintended or malicious use.

The information we infer can also be interesting for library
developers. We already calculate a list of methods and the
assigned capabilities which can be used to support code in-
spections for libraries. Because through this list developers
have assistance to identify and find critical methods with
ease, our approach can help to guide code inspections and
make them more efficient.

By analyzing and collecting the information from open
source libraries in a database, we could also build a recom-
mendation system that, based on metrics like the delta from
expectation or the number of used capabilities, could assist
developers to find a suitable library.

4. EVALUATION
In this section, we present the measures taken to evaluate

the capability inference in our approach. We are guided by
these research questions:

RQ1 Does the capability inference algorithm effectively find
capability sets equal to developer’s expectations of li-
brary capability usage?

RQ2 Does the capability inference algorithm exceed these
expected sets by more true positive values?

Setup.
Developers make educated guesses on the capabilities used

in a library when integrating it into their application. A
math library, for example, should not use the network or
the filesystem. To check such an assumption developers can
leverage the documentation of the library. However, to save
time developers might perform only a key phrase scan to
search for the presence (or absence) of certain terms. In
our evaluation, we mimic this process and use techniques
from Information Retrieval to scan documentation for key
phrases.

We use a subset of the Qualitas Corpus [29] incorporating
70 Java libraries. They were selected based on two crite-
ria. First, the documentation for the library must be ac-
cessible. Second, we choose libraries with a low number
of dependencies on other libraries, so that capabilities used
by dependents will not influence the outcome of the experi-
ments. That is because we assume that capabilities used by
dependencies will only be documented in the original docu-
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Figure 3: Capability-usage observed in libraries

mentation of that library and not in the documentation of
the library depending on it.

The selected libraries have different sizes and capture var-
ious domains. Ranging from ANTLR, which is a parser gen-
erator, to Weka, a collection of machine-learning algorithms,
or Pooka, a mail client with user interaction, multiple do-
mains are captured in the selection. Therefore, the capabil-
ity expectations for these libraries vary as different domains
require different capabilities. For instance, a developer will
expect pooka to use the GUI capability, because it should
display information for the user, while she would not expect
it from ANTLR.

As all libraries need the Java Class Library to work, we set
the baseline for all our experiments to the 64-bit version of
the OpenJDK version 7 update 60 running under Windows.

We constructed a list of key phrases for each capability (cf.
Table 3). For this, we used terms in the English language,
that can be assigned to the capabilities without ambiguity
between capabilities. We derived these key phrases from the
documentation of the JCL functions we annotated manually
in the bootstrapping phase. As the NATIVE capability is just
used as a marker, we do not assign any keyword to this
capability.

In order to search in API documentation for key phrases,
we first obtain the documentation either by downloading the
complete set of documentation or by requesting it directly
from the projects webserver. We then traverse the com-
plete documentation starting at allclasses-noframe.html,
which contains a complete list of all available classes, ab-
stract classes and interfaces in the project. For each of the
listed classes we extract the documentation given for each
method of that class. This text as well as the method sig-
nature for reference is passed to Apache Lucene.

Lucene creates an inverted index using all tokens found in-
side the provided text. We then use this index to search for
the key phrases in the key phrase list. Depending on whether
we search for a word, e.g., ”classloader”, or a phrase e.g.,
”load a class”, we use either a TermQuery or a PhraseQuery.
While term queries have support for stemming, phrase queries
do not. Stemming is a process where a term is reduced to its
root, the stem. For example, the term ”paint” would match
”painting” as well as ”painted”. The use of stemming results
in a more complete set of hits for this term.

For each project we record the capabilities whenever the
respective key phrases are found in the documentation. The
result of this process is a union set over the complete project
and hence is expected to be the complete footprint of the
library.

Results.
The results of the evaluation are presented in Figure 3.

For each project a line in the diagram shows the expected
and found capabilities. It uses the abbreviations already in-
troduced in Table 3. A green square with an equality symbol
(=) denotes that the capability was expected from the doc-
umentation and also found with the capability inference al-
gorithm. A red square with a minus symbol (-) means that
the capability was expected from the documentation, but
not found. A blue square with a plus symbol (+) represents
a capability that was found by the inference algorithm, but
was not expected from the documentation. Empty squares
represent capabilities that where neither found in documen-
tation nor inferred.
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Table 3: Expected key phrases for capabilities

capability key phrases
CLASSLOADING (CL) classloader, load a class, class-

loading, jar
CLIPBOARD (CB) clipboard, paste
DEBUG (DB) jvm, debug, intrumentation, de-

bugging
FS (FS) filesystem, file, folder, directory,

path
GUI (GU) textfield, menubar, user inter-

face, canvas, paint, editor, color,
rendering, render

INPUT (IN) press key, mouse, keyboard,
trackball, pen

NATIVE (N)
NET (NT) network, socket, port, tcp, udp,

ip, host, hostname, protocol,
connection, http, imap, pop3,
smtp, ssl, mail, transport, mime

PRINT (PR) printer, paper
REFLECTION (RF) reflection, class, field, method,

attribute, annotation
SECURITY (SC) security, security provider, pol-

icy, privilege, authority
SOUND (SD) sound, midi, wave, aiff, mp3,

media
SYSTEM (SY) system, command line, execute,

process, thread, environment,
runtime, hardware

UNSAFE (UN) pointer, memory address, mem-
ory access, unsafe

For example, for the ANTLR project, the FS, GUI, RE-

FLECTION, and UNSAFE capabilities were expected from key
phrases in the documentation and also found through ca-
pability inference. The documentation also suggested the
DEBUG capability, but no evidence for this was found in the
call graph. Moreover, the CLASSLOADING, NET, PRINT, SECU-
RITY, and SYSTEM capabilities were found, but not expected
from documentation.

We measured the agreement of our capability inference
with the results obtained from the key phrase search. For
the agreement we consider every capability the analysis and
the key phrase search agree upon – both positively and neg-
atively. For example, for the ANTLR project the agreement
is 87.50%. The mean agreement2 in the inspected project
set was 86.81% while the algorithm missed only 3.90% of
the capabilities detected from documentation.

When looking closer to individual capabilities, we see a
similar result (cf. Table 4). The only outlier here is the
DEBUG capability.

Moreover, the capability inference algorithm was able to
find 14.1% more capabilities than documented in mean over
all projects. It found evidence for undocumented use for
all capabilities except DEBUG, REFLECTION, and SOUND. The
UNSAFE capability was found in 1.8 times more projects than
it was documented.

2As the values per project are already normalized, we use
the geometric mean. Zero values are set to 0.001.

Table 4: Results by capability

capability agreement miss excess
CLASSLOADING 97.62% 2.38% 66.67%
CLIPBOARD 98.53% 1.47% 2.94%
DEBUG 42.86% 57.14% 0.00%
FS 94.83% 5.17% 20.69%
GUI 79.10% 20.90% 4.48%
INPUT 91.30% 8.70% 1.45%
NET 82.46% 17.54% 22.81%
PRINT 90.77% 9.23% 7.69%
REFLECTION 90.00% 10.00% 0.00%
SECURITY 96.67% 3.33% 133.33%
SOUND 94.29% 5.71% 0.00%
SYSTEM 100.00% 0.00% 133.33%
UNSAFE 100.00% 0.00% 180.00%

Figure 4 shows the capability distribution of each capabil-
ity over all projects. For the SYSTEM and UNSAFE capability
it can be seen that every documented capability use was suc-
cessfully detected and for most other capabilities the figures
are very close. However, in contrast to Table 4 we present
the true positives and not the agreement here, so true neg-
atives are not represented in the figure.

Discussion.
First and foremost, we are interested in meeting the devel-

opers expectations (RQ1) of the capability usage of libraries.
As our approach has a mean agreement of 86.81% over the
inspected projects, we clearly reach this goal. The capability
inference only misses a mean of 3.90% in our experiments.

What is even more interesting is that the capability in-
ference systematically discovers usage of capabilities that
are not to be expected by the developers when they use
documentation as a source of information (RQ2). While a
mean of 14.1% more capabilities over all inspected projects
were found only shows this as a tendency, when looking at
technical capabilities like CLASSLOADING (66.67%), SECURITY
(133.33%), SYSTEM (133.33%), and UNSAFE (180.00%), it is
apparent that the use of these capabilities by a library is
often not documented.

These technical capabilities may give hints towards whether
a library might be vulnerable to exploits. For instance, as
it may not be surprising that Junit is using the CLASS-

LOADING capability, developers might not expect this from
jFin DateMath, which is a library for financial date arith-
metic. However, in our evaluation results both libraries use
the CLASSLOADING capability although not suggested by the
project documentation. A quick inspection of jFin DateMath
revealed that two methods both named newInstance3 use
the forName method of java.lang.Class. According to Or-
acle’s Secure Coding Guideline (Guideline 9-9)[1], however,
this method performs its task using the immediate caller’s
class loader. As both implementations of the newInstance

method do not perform further checks on the provided class
name and simply pass it to the forName method, attackers in
an untrusted security context could use this so-called Con-
fused Deputy [14] in order to execute code in the library’s

3In org.jfin.date.daycount.DaycountCalculatorFactory
and org.jfin.date.holiday.HolidayCalendarFactory.
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Figure 4: The capability distribution over the projects

context given that it is more privileged than the context of
the caller.

Results show that our capability inference algorithm works
well for most of the capabilities. The capability with the
least convincing results regarding its agreement is the DE-

BUG capability. Our approach misses every occurrence found
through key phrase scanning. While we choose a rather
narrow set of methods for this capability during the boot-
strapping phase, the key phrases assigned to the capability
occur in comparatively many method documentations. For
instance, the phrase “Method that is most useful for de-
bugging or testing; . . . ” occurred in the documentation of
Jackson-core. While this phrase clearly does not imply any
kind of JVM debugging on the methods part, it still is in-
cluded in the results for the term query for the ”debug” key
phrase included in the key phrase list for the DEBUG capa-
bility. However, when we apply our algorithm to the jvm
monitoring tool jconsole, we are indeed seeing the DEBUG ca-
pability included in the results. In general, this observation
also applies to the SOUND and to the INPUT capability. This
is what leads us to the conclusion that documentation might
not be precise enough in these cases.

However, we receive rather good results for CLIPBOARD,
FS, NET, PRINT and REFLECTION where we find most of the
capabilities and even undocumented ones. This indicates
that our capability inference algorithm is a helpful approx-
imation. Moreover, the excellent results for the capabilities
CLASSLOADING, SECURITY, SYSTEM and UNSAFE, where the in-
ference significantly exceeds the expectations, are a very in-
teresting outcome. It may indicate that API documentation
is not a reliable source of information to build capability
expectations in a security aware context.

Most projects in our evaluation set make good use of capa-
bilities; one project is an exception. The Javax-inject project
shows no capability usage w.r.t. our inference, but also no ex-
pectations can be extracted from the documentation. This is
because the project consists entirely out of interfaces, which
by definition cannot have concrete methods up to Java 7.
We deliberately included the project in the evaluation set to
inspect whether the documentation of this project may raise
expectations. As it did not raise any expectations and also
by its contents could not use any capabilities, it is a good
example for true negatives.

As the evaluation answers both research questions posi-
tively, we conclude that our approach is effective in helping
to mitigate the developer’s dilemma when making library
choices for applications.

Threats to validity.
We only used API documentation for the extraction of

developer expectations. However, there are alternatives,
which we did not consider. In an open source setting, for
instance, one could inspect the source code. Another alter-
native would be to statically analyze the code for the pres-
ence or absence of specific, interesting calls, as e.g., static
bug checkers do. Manuals or other documents could also be
a source of information to developers. However, we think
that capability information should be denoted clearly in the
public API documentation of a project.

We constructed the key phrase list manually from the ob-
servations we made while inspecting the source code and the
documentation of the annotated native methods in the boot-
strapping phase. It is possible that we missed key phrases
that denote capabilities in API documentation. Moreover, it
is possible that we included key phrases that are not suitable
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to detect capabilities and introduce many false expectations.
Finally, the API documentation of the projects could be out-
dated [10], incomplete, or even wrong. In order to mitigate
this threat, we reviewed the key phrase list and the results
of search queries to remove questionable key phrases.

There are also threats to validity with regard to our infer-
ence approach. First, we are aware that we might introduce
false negatives through our filtering phase. However, we use
these filters to reduce false positives by removing call graph
edges introduced by incomplete receiver type information.
If we get rid of the filters while keeping our coarse-grained
capability model, we would receive a result, where almost
every time the complete set of possible capabilities would
be found in every library. In order to mitigate the risk of
introducing false negatives, we limit the filter to be only ap-
plied for receiver types inside the JDK. Second, the analysis
we use is unaware of everything that is beyond the scope
of the used call graph algorithm, so that we do not detect
calls made through reflection and direct manipulation of the
heap through native code.

The largest manual step in our approach is the bootstrap-
ping of native methods of the JCL. As we inspected the
implementation and documentation of these methods man-
ually, we may have documented too less, too much, or in-
correct capabilities for methods, even though we reviewed
the dataset multiple times. In future work, we would like
to exchange this process with an automated analysis of the
syscalls made in the implementation. Beyond the process
being more efficient, it is also repeatable for new versions of
the JCL and applicable to native code shipped with libraries.
It might also be more reliable in terms of precision.

5. RELATED WORK
As Java was designed with the idea of loading code dy-

namically, it was also equipped with an elaborate security
mechanism to protect clients from malicious code [12]. It is
based on runtime, stack-based access control checks w.r.t.
policies provided by the platform, code owners or users.
However, writing these policy files has proven to be chal-
lenging for developers and thus Koved et al. [17] derived a
method (and improved it in [11]) to infer these access rights
so that the resulting policies honor the Principle of Least
Privilege [22]. Their algorithm traces calls to methods for
permission checks in the Java security architecture just as
we trace back actual native calls. Hereby, they can effec-
tively create a set of necessary permissions. Nevertheless,
they rely on the assumption that every critical resource is
indeed effectively protected with a runtime check, as they
trace the check and not the resource itself.

The Android platform provides a permission-model for
the authorization of apps. When installing an app on an
Android-based device, the system explicitly asks the user to
confirm a list of permissions granted to the app. Similar
to our approach, a coarse-grained permission model is used
to represent system resources. Developers have to supply
a manifest with their app listing every used permission in
form of a list of strings. For example, the string android.-

permission.READ_CONTACTS represents the permission to read
the contacts on the device from the app. If the app then calls
a platform function related to a permission the Android run-
time checks if the permission has indeed been granted to the
app.

Similarly to Java policies, it is also hard for developers
to write manifests that only include necessary permissions.
Accordingly, Bartel et al. [2] follow a similar approach to the
one provided by Koved et al. With their COPES tool they
were able to discover a significant number of apps that suffer
from a gap between declared and used permissions. Also, as
Sun et al. [25] point out, the majority of the Top 50 apps are
shipped with native libraries. Building on their outstanding
work for the Java Native Interface [24, 27, 28, 23], they
build an isolation model for native libraries in Android apps
effectively protecting users from malicious or faulty native
code.

An alternative for developers would be to isolate libraries
and control their effective capabilities by means of the object-
capability model [21]. For Java currently two approaches to
the model exist. First, there is the older J-Kernel system
by Hawblitzel et al. [15, 31] and, secondly, the newer Joe-
E system by Mettler et. al. [20]. Both approaches are in
their nature constructive and thus require excessive change
to the complete system including the JCL, which might not
be possible in industry environments.

The protection of applications or platforms from malicious
code is also the focus of active research from a system per-
spective. Cappos et al. [5] construct a Python-based sand-
box with a small, isolated kernel library. By this, they pre-
vent attackers from leveraging bugs in the kernel library for
privilege escalation. Moreover, De Groef et al. [6] are con-
cerned with the integrity of the execution process itself. As
they point out, Write-XOR-Execute protection mechanisms
of operating systems cannot be applied for applications with
Just-in-time compilation as the runtime needs to write into
and execute the same memory block. Their system separates
sensitive from non-sensitive code and protect the system by
blocking sensitive code.

Intrusion detection works in a similar way to our approach
as there system calls are analyzed, which correspond to na-
tive calls in our approach. There it has been well estab-
lished as a useful indicator. Maggi et al. [19], for instance,
use sequence and arguments of system calls with a behav-
ioral Markov model to detect anomalies. Whereas, we want
to understand critical resource usage, they go beyond and
want to detect abnormal usage patterns.

Of course, developers can use tools like FindBugs [16] to
determine a footprint of a library, but will only find issues for
patterns that have already been included in the bug checker.
Other tools like HAVOC-LITE [30] or ESC/Java [9] are able
to determine a resource usage of a library, but first have to be
configured with the entire set of resources and the methods
to reach them.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel approach towards a ca-

pability inference for Java. It is based on a manually created
dataset of native methods and their capabilities in the JCL.
An automated process propagates these capabilities along a
call graph through the JCL and a library in order to find
the capability footprint of the library. To produce helpful
results, we added a refinement step to the used call graph al-
gorithm and also apply filtering for alternative edges during
capability propagation. Although filtering may impede the
soundness of the approach, the produced results are closer
to expectation.
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Being able to produce a capability footprint for a library
helps developers in their task of selecting libraries for their
projects. With our analysis, a developer can get answers to-
wards capability usage in a few seconds instead of inspect-
ing the source code or the documentation manually. We
show that the approach is able to find capabilities expected
from documentation with an agreement of 86.81% . More-
over, we show that the approach exceeds these expectations
by finding 14.1% more capabilities than expected from the
documentation and produces a more accurate footprint of a
library’s actual capability usage.

We plan to study the accuracy of the approach regard-
ing developer expectation more closely with the help of a
user study. Developer experts will be asked to document
their expectations regarding multiple software libraries. By
this, we will be able to further determine the utility of the
approach for secure software development.

Furthermore, we plan to infer the capabilities for native
methods by an automated process rather than the manual
process presented in this paper. A static analysis on the
native implementations of the methods can extract and trace
system calls in order to achieve a reproducible result for
new versions of the JCL. Furthermore, it is useful to include
native library code into the process.
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8. LIBRARIES USED IN EVALUATION
We selected 70 projects, shown in Table 5, from the Qual-

itas Corpus that have a non-generated, non-empty API doc-
umentation.

9. REPLICATION PACKAGE
Our implementation of the capability inference algorithm

has been successfully evaluated by the Replication Packages
Evaluation Committee and found to meet expectations.

We provide the replication artifact at the following URL:

http://www.st.informatik.tu-darmstadt.de/artifacts/

peaks-capmodel/

9.1 Introduction
The purpose of this manual is to guide you through the

steps necessary to run our analysis and reproduce the results
in the paper’s evaluation. As we make assumptions about
the folder structure in our software, it is important to check
whether the JAR files of the pure analysis and the evaluation
are located in the same folder as the resource folder. This
is the case, when you use the replication package ZIP file
provided by us. When you build from source, please make
sure this is the case. The resource folder contains the map-
ping of native calls to capabilities and the rt.jar file of the
unofficial windows build of the OpenJDK 1.7 update 60.

Table 5: Project selection used for evaluation
project version
antlr v4.5
aspectj v.1.8.5
axion v1.0-M2
checkstyle v6.3
cglib v3.1
collections v4.0
commons-beanutils v1.9.2
commons-cli v1.2
commons-codec v1.10
commons-configuration v1.10
commons-fileupload v1.3.1
commons-io v2.4
commons-lang v3.3.2
commons-logging v1.2
derby v10.1
displaytag v1.2
easymock v3.3.1
jFin DateMath v1.0.1
jackson-annotations v2.5.1
jackson-core v2.5.1
jackson-databind v2.5.1
jasml v0.10
javassist v3.19.0-GA
java-hamcrest v2.0.0.0
javax-inject v1
javax-mail v1.5.2
jedit v5.2.0
joda-time v2.7
gson v2.3.1
gwt v2.7.0
guice v4.0-beta
guava v18.0
guava-gwt v18.0
geotools v0.9.0
jgroups v3.6.1.Final
jrat v1-beta1
jspwiki v2.10.1
jsoup v1.8.1
junit v4.12
log4j v1.2.17
lucene-* v4.10.3
maven-core v3.2.5
maven-plugin v3.2.5
mockito v1.9.5
pooka v2.0 080505
sandmark v3.1.1
slf4j v1.7.9
sunflow v0.07.2
testng v6.8.21
weka v3.7
xstream v1.4.7

9.2 Prerequisites
The analysis and the evaluation tooling is written in Scala

and compiles down to Java Bytecode. Thus, it will run on
every machine with a Java 1.8 runtime installed. We were
successfully able to run it using the Windows 8 and MacOS
X 10.10.3 operating systems. For reproducing the evalua-
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tion charts and statistics you may need R4 and a standard
browser (we recommend using Firefox).

9.3 How to use the Tool (Quick Software Man-
ual)

If prerequisites are met you can start our tool from the
command line interface. Open a console and navigate to the
folder where you placed the jar file and the resource folder. If
you want to run the analysis you have to provide a project
that you want to test. Therefore, you have to specify it
via the -cp parameter. To execute the jar and analyze the
”xstream” library you type in the following command:

java -jar PEAKS_JavaCapAnalysis.jar

-cp=resources/projects/xstream

Notice that ”xstream” is not a .jar but a folder. If you pass
a folder to the analysis every class file and jar in this folder
will be included to the analysis. If you start the analysis,
there will be a menu.

[1] Start capability analysis for libraries.

[2] Sliced capability analysis for projects.

[3] Help.

The normal usage (used in the paper) is the first option.
If you only provide a project it will print capability set to
the command line. You could specify other parameters if
you are only interested in some capabilities or if you want
get the methods which transitively use certain capabilities.
Use the third option to get an overview over all available
parameters.

Option 2 from the menu above is a bit more advanced.
The analysis will only take care of the actually used part
of the libraries in an application. So far, this works only
under the assumption that all the application dependencies
are packaged in the same jar as the application. As this is
the common case for the deployment of most applications it
should fit most development processes nicely.

9.4 Reproducing the Evaluation
This section describes how to reproduce our evaluation

results.

Requirements.
Note that you will need a connection to the Internet as

we used the online documentation for some libraries. If you
work without an Internet access the capability set from the
keyword scan of libraries with online documentation will be
empty and the results will differ from ours. Please make sure
that the PEAKS_Eval_JavaCapAnalysis.jar file is located in
the same folder as the output and resources folder.

Reproducing the Evaluation.
You can start the evaluation by opening a console. Then

navigate to the folder where the jar is located and execute
the following command:

java -jar PEAKS_Eval_JavaCapAnalysis.jar

After executing this command, a menu will appear. Press
1 to trigger the evaluation process. The evaluation will start
now, the output will be written to the output folder. The

4http://www.r-project.org/

evaluation can take up to 6 hours (depending on your com-
puter). Due to heavy parallelization of the OPAL Frame-
work your computer can be quite busy while running the
evaluation. You will then find the results in the output

folder in the file EvaluationResults.csv. You can com-
pare them to our results from the Evaluation folder. If the
evaluation is done and you may want to recreate the capa-
bility distribution chart (cf. Figure 4) you have to execute
the jar again. Choose the second menu item this time. It
will trigger a transformation of the EvaluationResults.csv

to another representation needed to execute the R script.
This new file is also located in the output folder and is
named transformedResults.csv. The R script (peaks.R)
is located in the Evaluation folder. If you want to use it,
adapt the working directory to the output folder before.
To create the capability matrix (cf. Figure 3), copy the
EvaluationResults.csv file from the output folder into the
Evaluation folder and open the capmap.html file with a
browser. As Google Chrome (and other browsers) suppress
locally run java scripts from loading files (in this case the
CSV), we suggest Mozilla Firefox or running a small web-
server (e.g. with NodeJS).
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