Toward Incremental Type Checking for Java

Edlira Kuci

Sebastian Erdweg

Mira Mezini

TU Darmstadt, Germany

Abstract

A type system is a set of type rules and with respect to
these type rules a type checker has an important role to
ensure that programs exhibit a desired behavior. We consider
Java type rules and extend the co-contextual formulation of
type rules introduced in [1]] to enable it for Java. Regarding
the extension type rules result is a type, a set of context
requirements and a set of class requirements. Since context
and class requirements are propagated bottom-up and while
traversing the syntax tree bottom-up and are merged from
independent subexpression, this enables the type system to
be incremental therefore the performance is increased.

Categories and Subject Descriptors F.3.1 [Specifying and
Verifying and Reasoning about Programs]; F.3.2 [Semantics
of Programming Languages]: Program analysis

Keywords type checking; incremental; co-contextual; con-
straints; class table; Java

1. Introduction

Type systems build context information with a top-down
traversal of the syntax tree from a program. The top-down
propagation of typing contexts has some problems. As the
type checker traverses the syntax tree top-down, typing con-
text is extended and it coordinates type checking of indepen-
dent subexpressions. As a consequence it hampers incremen-
talization of type checking, because typing subexpression
depends on typing parent expressions and vice versa.

We consider Featherweight Java as a core calculus of
Java [2] to construct incremental Java type system from our
proposed method. In addition to the typing context of simple
type systems, Featherweight Java uses a class table during
type checking as part of the type rules. The class table con-
tains all the necessary information about the defined classes.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).
SPLASH Companion’15, October 25-30, 2015, Pittsburgh, PA, USA

ACM. 978-1-4503-3722-9/15/10
http://dx.doi.org/10.1145/2814189.2817272

46

To enable type checkers with incrementalization, dependen-
cies that occur between sub-expression, imposed from the
usage of the typing context and the class table, should be re-
moved. In our proposed method, we eliminate typing context
and the class table. We propose bottom-up propagated context
requirements as a dual concept of the typing context. Instead
of looking up the variable in the context or the field in the
class table we generate a fresh class name (annotated with
metavariable U) as a placeholder for their actual types. The
same idea is used for class requirements, which are the dual
concept of a class table. Instead of having a field (method)
lookup in the class table, we generate a new requirement
stating that the class need to have the given field (method)
of a freshly generated class name. We call this approach
co-contextual type checking. Co-contextual type checking
moves bottom-up (from the leaves up to the root). As a con-
sequence the information starts to collected from the leaves.
The type checker refines the types of the sub-expressions and
merges the context requirements and adds class requirements
constantly until we reach the root of the tree.

Let us consider a simple example in java and delineate
how standard and co-contextual type checking would apply
to it.

class Pair{
Int first;
Int second;

(new Pair(1,2)).first

In Featherweight Java type checking a field access (new
Fair(1,2)).first is just a lookup in the class table, where the
type of first is Int. On the other hand, co-contextual type
checking does not have that information since the class table
does not exist. As a result, we do not know the type of the
field first, therefore we bind first to a fresh class name U.
This generates a new class requirement of the form, CR =
Fair hasField first: U.

In the following we present the typing rule field access.
First we show the typing judgment. We suppose the original
typing judgment has the form CT,T' e : T' | C, where CT
is the class table, I is the typing context, e is the expression
under analysis, and 7" is the type of e if all type constraints
in set C' hold. For reference, we use the constraint-based
contextual type rule of Featherweight Java for field access.

eo: Ty |C | R|CRy U, isfresh

add(CRy, (T, hasField f : Uy)) = CR|¢,

T-FIELD

eofU0|CUC,,|R|CR

Figure 1. A co-contextual constraint-based formulation of the field invocation.

CT.Tkrey:Ty|C fields(CT,Ty) =Tf
CTF |_ eo.fi : T’L ‘ C

Co-contextual type rules use judgment of the form
e:T|C| R|CR,where e is the expression under analysis
and T is the type of e if all type constraints in set C hold and
all context requirements in set R and class requirements in
set C'R are satisfied.

To co-contextualize field access type rule we have to define
it without the context and the class table. As a consequence
we have no information for the type of the field f, which in
the standard type rule is a class table lookup of f, yielding
class T;. In lack of a class table, we introduce fresh class
names as mentioned above and associate them with variables
or fields. Later on when more information for variables or
fields is available we refine their types retroactively using type
constraints and unification. As stated previously we do not
have a class table, therefore we do not use the usual functions
of standard type checking of field lookup (fields(CT,T)) and
method lookup. Instead we have the dual operations for field
lookup and method lookup, i.e., adding a new requirement to
the class requirements. Figure [I| shows the type rule for field
access in the co-contextual Featherweight Java type system.
For the constraints we have union U of them. fields(CT, T)
is translated to new requirement (I hasField f: Uy), which
is added to the rest of the class requirements obtained from
the already type checked expression e;. All context/class re-
quirements collected from different sub-expressions are prop-
agated up to the syntax tree and meanwhile merged/added
if possible. The result of the merging/adding is a new set of
requirements and new constraints.

The context requirements need to assure that all variables,
fields and methods get assigned to the same type. There-
fore we have the auxiliary function merge to identify the
overlapping requirements in the context requirement set. The
merge function is the same as the one presented in [1]]. On
the other hand adding of class requirements gets more com-
plicated. Class requirements are mappings from classes C
to its corresponding class declaration cld. Where a class
declaration is a triple of super class, fields and methods

T-FIELD

47

cld = (superClass, List[Field), list{Method)). To realize
adding of the class requirements we first find the class declara-
tions for matching classes with the same name, then perform
adding internally to every part of the triple. To summarize we
have:

e Adding of super classes
¢ Adding for all equally-named fields

¢ Adding for equally-named methods
* Adding of the return type
= Adding for all equally-named parameters

» Adding of the body requirements

Requirements when reaching the root of the syntax tree
should be satisfied to have a well-typed program. Satisfaction
of requirements is related when the actual type of variables
or fields is available. For instance, we get the actual type for
a variable or a field (the user defined type), all fresh class
names assigned to them are unified with the actual type and
the requirements corresponding to them are removed. That is,
when in standard type system the context is extended with a
new binding for the field or the variable, as a dual operation
to it we have a removal from the context requirement set,
meaning that the requirement is satisfied.

We can systematically construct co-contextual type rules
for Featherweight Java from constraint-based contextual type
rules. A co-contextual type-system, by decoupling the depen-
dencies between sub-expressions, enables incrementalization
of the type checker, which can improve the performance
during type checking significantly.

References

[1] S. Erdeweg, O. Bracevac, E. Kuci, M. Krebs, and M. Mezini.
A co-contextual formulation of type rules and its application
to incremental type checking. In Proceedings of Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2015. to appear.

[2] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight java: A
minimal core calculus for java and gj. ACM Trans. Program.
Lang. Syst., 23(3):396-450, May 2001.

