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Abstract
Traditionally, object-oriented software adopts the Observer pattern
to implement reactive behavior. Its drawbacks are well-documented
and two families of alternative approaches have been proposed, ex-
tending object-oriented languages with concepts from functional
reactive and dataflow programming, respectively event-driven pro-
gramming. The former hardly escape the functional setting; the
latter do not achieve the declarativeness of more functional ap-
proaches.

In this paper, we present RESCALA, a reactive language which
integrates concepts from event-based and functional-reactive pro-
gramming into the object-oriented world. RESCALA supports the
development of reactive applications by fostering a functional
declarative style which complements the advantages of object-
oriented design.

Categories and Subject Descriptors D.1.5 [Software]: Program-
ming Techniques—Object-oriented Programming;D.3.3 [Program-
ming Languages]: Language Constructs and Features

General Terms Languages, Design

Keywords Functional-reactive Programming; Scala; Event-driven
Programming

1. Introduction
Reactive applications are an important class of software systems.
In these applications, events or state changes, e.g., user interaction,
data changes in a Model-View-Controller design, network mes-
sages, value acquisition from sensors, etc., trigger computations,
which may in turn update the state of the system, eventually trig-
gering new events and/or computations. Even if reactive systems
have been studied for a long time, they are still difficult to design
and maintain. At the code organization level, proper modularization
is hard to achieve because reactions involve cross-module entities
and must be triggered in several places in code. At runtime, the nor-
mal control flow is interleaved with reactions to events, leading to
interactions that are hard to foresee.
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Object-oriented (OO) reactive applications traditionally adopt
the Observer pattern [13], which relies on the concept of inversion
of control [14] to decouple the observers from observables. Other
than that, the pattern does not contribute much to managing the
complexity of reactive systems and has been criticized for clutter-
ing code and hindering composability of reactions [19].

Two classes of alternative approaches have emerged to address
the complexity of reactive applications. The first class includes
languages that support event-driven programming at the language
level. Examples are C# [8], Ptolemy [29], EventJava [11], ES-
cala [15], DominoJ [35]. These languages provide first-class repre-
sentation for events; some of them support expressive event mod-
els with advanced features like quantification, implicit events and
event correlation. We refer to this class as event-based languages.
The second class includes languages with direct representation of
reactive values and means to compose computations based on them
through dedicated abstractions. The ideas around reactive values
were originally explored by synchronous dataflow languages [3,
28] and functional-reactive programming (FRP) [10]. More re-
cently, these concepts have been proposed in a more modern flavor
in reactive languages like Scala.React [19], FrTime [6], and Flap-
jax [25]. We refer to this class as reactive languages.

Both classes have their tradeoffs, which calls for an integration
of their concepts. Event-based languages nicely integrate with OO
design, support OO modularity, encapsulation, late binding and fine
grained updates of object state, but do not achieve the declarative
style and the level of expressiveness of reactive languages. With
reactive languages, dependencies are defined in a more declarative
way and updates are automatically performed by the runtime. But
these languages do not fit well into the OO setting. Reactive ab-
stractions do not support fine-grained changes to objects: Objects
must be recomputed from scratch, a constraint that enforces im-
mutability and does not integrate with OO modifiable state. In addi-
tion, events are still desirable, since they model certain phenomena
in a direct and intuitive way.

In this paper, we present a language design that seamlessly in-
tegrated reactive values with an advanced event system. Thanks to
this solution, it is possible to exploit the benefits of reactive abstrac-
tions without losing the advantages of OO design. In our design,
both events and reactive values are object attributes in addition to
fields and methods and exposed as part of the object interface. Cru-
cially, the design comes with a rich library of operations (API) for
bridging the gap between the worlds of events and reactive values
making them composable to support a mixed OO and functional
style.

We implemented these ideas in RESCALA, a reactive language
based on Scala. Building upon existing approaches for event-driven
and reactive programming, the key new contribution of RESCALA,
its added value, is the unification of imperative, modular events and
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reactive values making them composable to support a mixed OO
and functional style in designing reactive systems. To the best of
our knowledge such a unification has not been proposed before.
To summarize, in this paper, we make the following contributions:

• We provide an analysis of language-level support for reactive
applications focusing on event systems and reactive values. We
investigate their tradeoffs and how these abstractions relate to
the OO and to the functional paradigms.
• We present the design of RESCALA, a language which combines

signals and events and supports a mixed functional and impera-
tive style. Thanks to the fluid integration of events and signals,
RESCALA raises the level of abstraction in reactive applications,
and promotes a gradual migration to a more declarative style.
• We provide a usable implementation of the language and apply

RESCALA in several case studies. We demonstrate the crucial
role of RESCALA’s conversion functions by refactoring four OO
reactive applications. We introduce more than 90 signals and
show the improvement of the resulting design.

The paper is organized as follows. Section 2 motivates the work
analyzing the limitations of signals and events taken singularly.
Section 3 presents the design of RESCALA. Section 4 describes
our implementation. Section 5 validates our contribution with case
studies. Section 6 presents related work. Section 7 concludes and
outlines areas of future research.

2. Problem Statement
Traditionally, OO applications implement reactivity by using the
Observer pattern. The limitations of this approach have been ana-
lyzed elsewhere [19, 25]. For convenience, we briefly summarize
them. First, dependencies are not directly specified but rather es-
tablished by inversion of control – this reverses the intuitive flow
of the applications and makes code harder to understand and ana-
lyze. Additionally, a lot of boilerplate code is required to imple-
ment even elementary functionalities, which further complicates
program comprehension. More importantly, separation of concerns
is hard to achieve because reactive functionalities are mixed with
the application logic. Since callbacks do not return a value, they
are not composable, limiting extensibility and reuse and program
comprehension cannot be guided by types. Finally, callbacks en-
force exclusively an imperative programming style, since reaction
is performed via side effects.

Event-based languages have emerged to address these limita-
tions providing abstractions for event-based programming [11, 15,
29]. In this section, we review these approaches with their limi-
tations and motivate the need for complementing event-based lan-
gauges with abstractions for reactive values, in the spirit of FRP
and dataflow programming [6, 7, 10, 19, 22, 25].

2.1 Event-based Languages
Languages in this class, like C#, EventJava [11], Ptolemy [29] and
EScala [15] provide dedicated abstractions for events and event-
driven interactions. Since RESCALA extends EScala, we take the
latter as representatives of event-based langauges to investigate
their limitations.

Event abstractions and their advantages. EScala [15] combines
concepts from OO and AOP. Beside imperative events, EScala
supports implicit events. In the style of AOP, implicit events al-
low one to capture points in the execution of the program by the
after(method) and before(method) pointcuts without having to
explicitly trigger events at the boundaries of method executions,
which is tedious and error-prone.

1 abstract class Figure { ...
2 protected evt moved[Unit] = after(moveBy)
3 evt resized[Unit]
4 evt changed[Unit] = resized | | moved | | after(setColor)
5 evt invalidated[Rectangle] = changed.map(() => getBounds())
6 ...
7 def moveBy(dx: Int, dy: Int) { position.move(dx, dy) }
8 def setColor(col: Color) { color = col }
9 def getBounds(): Rectangle ...

10 }
11 class Connector(val start: Figure, val end: Figure) {
12 start.changed += updateStart
13 end.changed += updateEnd
14 ...
15 val updateStart = { => ... }
16 val updateEnd = { => ... } ...
17 }
18 class RectangleFigure extends Figure {
19 evt resized[Unit] = after(resize) | | after(setBounds)
20 override evt moved[Unit] = super.moved | | after(setBounds)
21 ...
22 def resize(size: Size) { this.size = size }
23 def setBounds(x1: Int, y1: Int, x2: Int, y2: Int) {
24 position.set(x1, y1); size.set(x2 − x1, y2 − y1)
25 } ...
26 }

Figure 1: EScala Events.

EScala also supports declarative events, which are defined as a
combination of other events. For this purpose it offers operators like
e1||e2 (occurrence of one among e1 or e2), e1&&p (e1 occurs and
the predicate p is satisfied), e1.map(f) (the event obtained by ap-
plying f to e1). Event composition allows one to express the appli-
cation logic in a clear and declarative way. Also, the update logic is
better localized because a single expression models all the sources
and the transformations that define an event occurrence. Compared
to EventJava and Ptolemy, EScala takes a more object-centric view.
Events are part of the interface of a class, so event-driven behavior
nicely integrates with OO data abstraction, inheritance, and subtype
polymorphism.

In Figure 1, we show a slice of a drawing application in ES-
cala. The Figure class defines an implicit event after(moveBy),
automatically triggered at the end of the execution of the moveBy

method. The declarative event changed is triggered when one of
the events resized, moved, or after(setColor) is triggered. The
declarative event invalidated is defined as a transformation of the
event changed. Handlers are registered and unregistered to events
with the += and -= notation (cf. Line 12 in Figure 1). Events are ex-
plicitly triggered by the event() notation. EScala events integrate
with objects in several ways. Events support visibility modifiers
(Line 2), abstract events can be refined in subclasses (Line 19).
Events can be overridden in subclasses (Line 20) and the inherited
definitions can be accessed by super. Finally events are late-bound:
For example in Line 12 if start refers to a RectangleFigure, the
definition of changed in RectangleFigure is chosen.

Limitations of event abstractions. While event-based languages
address several issues of reactive software, several drawbacks are
still in place. The application control flow is still inverted, since
updates are performed only indirectly by event handlers that return
void and do not support composition. The definition of the events
and of the reactions to them (the update logic) are separated, mak-
ing dependencies hard to grasp in code. More generally, event han-
dlers update the object state in an imperative way. Thus, side effects
are inherent to those event models, which limits the migration to a
more functional style.

Triggering an event in every point in the code where a variable
on which other variables depend on is updated leads to code scatter-
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1 imperative evt tick[Unit]
2 var hour: Int = 0
3 var day: Int = 0
4 var week: Int = 0
5

6 tick += nextHour
7 def nextHour() {
8 hour = (hour + 1) % 24
9 }

10 evt newDay [Unit] = tick && (() => hour == 0)
11 newDay += nextDay
12 def nextDay () {
13 day = (day + 1) % 7
14 }
15 evt newWeek [Unit] = ...
16 newWeek += nextWeek
17 def nextWeek() {
18 ...
19 }

(a)

1 val tick = new Var(0)
2 val hour = Signal{ tick() % 24 }
3 val day = Signal{ (tick()/24)%7 + 1 }
4 val week = Signal{ ... }
5

6

(b)

Figure 2: Simulation of Elapsed Time (a) with Events and (b) with
Signals.

ing and tangling [32]. In addition, new events cannot be introduced
transparently by clients: the original codebase must be modified by
converting fields into observables and by adding event triggering.
Therefore, event definitions are hardly extensible and require care-
ful preplanning.

2.2 Reactive Languages
Some of the issues with event-based languages are addressed by
abstractions for reactive values provided by reactive languages. In
the following, we briefly present the concept as it is supported by
some contemporary languages and discuss its advantages. Subse-
quently, we focus on the limitations of this concept compared to
events, which motivates the need for improving event-based lan-
gauges with reactive abstractions instead of abandoning events.

A reactive value, a.k.a. behavior in FrTime [6] and Flapjax [25],
or signal in Scala.React [19], is a language concept for express-
ing functional dependencies among values in a declarative way.
Intuitively, a reactive value can depend on variables – sources of
change without further dependencies – or on other reactive val-
ues. When any of the dependency sources changes, the expression
defining the reactive value is automatically recomputed by the lan-
guage runtime to keep the reactive value up-to-date. In this paper,
we focus on signals, an abstraction for reactive values introduced
by Scala.React [19], a library implementing reactive abstractions
for Scala.

To give an intuition of signals and their advantages over events,
we use code extracts from a program that simulates a 2D environ-
ment, called the Universe application, which we used as a case
study for EScala [15]. The environment is populated by animals
and plants; the simulation involves growing of animals and plants,
movements of animals, and planning for food search. A tick repre-
sents a simulation step equivalent to an hour in the simulation time;
elapsed hours, days, and weeks must be updated accordingly.

In Figure 2, we show side-by-side two code fragments that use
EScala events (a) and Scala.React signals (b) to model the elapsed
time.

Signals (Figure 2b) enable the programmer to specify only the
entities that are really part of the application logic: The tick, the
hour, the day, and the week values. Each of them is declared to-
gether with its definition in terms of the other entities (for exam-
ple, hour is defined in terms of ticks, Figure 2b, Line 2). The
Scala.React library transparently performs all the necessary up-
dates along the dependency chain of values declared as signals,

e.g., to update the value of hour, when the value of tick changes.
No additional programming logic is needed for these updates.

On the contrary, modeling dependent time-changing values by
using events (Figure 2a) requires to introduce artificial entities
(like the newDay event, the newWeek event, and the nextDay and
the nextWeek callbacks). As a result, the code is much more com-
plex. In addition, boilerplate code is introduced to register events
(Lines 11 and 16), the definition of each entity is separated from
declaration, and the application logic is spread among event def-
initions and callbacks. For example, the logic of day, declared at
Line 3, is spread between Line 10, and Line 13.

Generally, by using signals, functional dependencies are ex-
pressed in a direct and declarative way. In contrast to the event-
based reactivity, dependencies are not inverted. Since each reac-
tive element is defined on the basis of its depending values, sig-
nals capture the design intention of the programmer; dependencies
among reactive entities are automatically tracked and the runtime
is in charge of keeping depending values updated. Another advan-
tage, compared to inversion of control, is that the definition of the
reactive behavior is not separated from the source of the change.
As a result, reactive code is clearer and easier to read. Furthermore,
since signals are reactive values themselves, new signals can be
defined as dependents on existing ones. Signals composition fos-
ters rapid implementation of new reactive functionalities and code
reuse. Finally, signals identify dependencies which can be used to
transparently cache the computed values.

2.3 Need for Complementing Events with Signals
While reactive values can model a computation in a simple and
elegant way, they are not enough alone.

First, events are a well established programming model in the
OO community, they properly integrate with OO [15] and OO
programmers are unlikely to refrain form using them.

Second, most of existing OO reactive applications are event-
based – graphic libraries being probably the most widespread ex-
ample. Rewriting all the existing event-based software to use sig-
nals is probably unfeasible.

Third, events are conceptually the correct way of modeling phe-
nomena that happen at a point in time. For example, the reception of
a network packet could be modeled by a signal that has an Option

type. The signal evaluates to None when no packet is available and
to Some[Packet] when a packet arrives (Figure 3, Line 1). It is clear,
however, that a programmer would be only interested in the change
of such a signal, making the use of an event much more suitable for
this case (Figure 3, Line 3).

1 val packet: Signal[Option[Packet]] = Signal{ ... }
2

3 evt packetReceived[Packet] = ...

Figure 3: Packet reception with Events and Signals.

Finally, reactive values have been designed in functional lan-
guages where they are applied to immutable (typically primitive)
values. As such, they conflict with mutable state and incremental
computation. For example, a signal of a complex value such as
Signal{aList.filter( >10)}: Signal[List[T]] recomputes the
filter function for all the elements of the list aList, every time
an element is added to aList – with a clear loss of performance.
While there are attempts to incrementalize such computations they
only work for certain operations and are limited the specific domain
of data structures [20]. Instead, events are applicable in general and
can be generated by partial modifications of objects (like the in-
sertion of an element into a list). On the receiver part, objects can
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1 val age = 0
2 val size = 1
3 ...
4 def canLive: Boolean = {
5 (age <= maxAge ) && (size <= 3000) && (size >= 1)
6 }
7 def disease() = { age ∗= 2 }
8

9 evt shouldDie[Unit] =
10 (after(getOlder) | | after(grow) | | after(disease)) &&
11 ( => !canLive()) | | killed )

(a)

1 val age = new Var(0)
2 val size = new Var(1)
3 ...
4 val canLive: Signal[Boolean] = Signal {
5 (age() <= maxAge ) && (size() <= 3000) && (size() >= 1)
6 }
7 def disease() = { age ∗= 2 }
8

9 evt shouldDie =
10 canLive.changed && !canLive() | | killed
11

(b)

Figure 4: Dependencies with Implicit Method Events (a). Dependencies as Signals (b).

be updated imperatively minimizing the update by performing fine
grained changes.

The discussion so far shows that events and signals have their
advantages and disadvantages and event-based applications cannot
be refactored to use only signals without loss of desired properties.
We derive that there is a need for a language design that supports
a fluid transition between the two worlds and seamlessly integrates
them into the OO setting. This was the goal driving the design of
RESCALA, which we present next.

3. REScala
In this section, we present RESCALA, a reactive language that pro-
vides a powerful event system – recapitulated in Section 2 – with
seamlessly integrated support for reactive values. Some details on
the implementation of RESCALA are in Section 4. Reactive values
are called signals in Scala.React [19]; we adopt the same terminol-
ogy in RESCALA.

As argued in the previous section, to properly support reactive
applications, language designs are needed that offer both impera-
tive and functional styles of programming reactivity. But, just hav-
ing them side-by-side is only half-way to a coherent language de-
sign; in addition, imperative and functional abstractions to reactiv-
ity should be made composable. To achieve this goal, the key inno-
vation of RESCALA, consists in mechanisms to seamlessly bridge
between the imperative and functional styles of reactive behaviors
to make them composable.

3.1 Signals
In RESCALA, the general form of a signal s is Signal{expr}, where
expr is a standard Scala expression. When expr is evaluated, all
Signal and Var values it refers to are registered as dependents
of s; any subsequent change of them triggers a reevaluation of s.
RESCALA signals integrate seamlessly with OO design. They are
class attributes like fields and methods. They too can have different
visibilities. Public signals are part of the class interface: Clients can
refer to them to build composite reactive values. Conversely, private
signals are only for object-internal use.

RESCALA signals cannot be re-assigned new expressions once
they are initialized. At first sight, it may seem intuitive to treat sig-
nals like object fields, which can be reassigned as needed. How-
ever, this makes applications harder to understand; signal values
would depend not only on the control flow inside their expression,
but also on the control flow of the application, which can assign
a different signal expression. Hence, the definition of the depen-
dencies is separated from the declaration of the signal; making sig-
nals reassignable comes at the risk of vanishing the motivations that
lead to their introduction. Fortunately, our experience suggests that
this need does not arise in practice. This design decision enforces

uniformity across signals and methods: Method bodies cannot be
assigned dynamically, signals expressions cannot be assigned after
creation. In RESCALA, this design is technically achieved by declar-
ing them with Scala’s val modifier.

As expected, RESCALA signals will replace the use of (implicit)
events in EScala for encoding functional dependencies between
values. For example, consider the snippet from the Universe ap-
plication in Figure 4a that uses events to express the functional de-
pendency between the canLive attribute of an animal on its age

and size. The logic of the simulation is the following: An animal
may become ready to die whenever it gets older (as time elapses),
whenever it grows (as it eats food), or whenever it has a disease (a
disease is implemented by simply doubling the age); the canLive

method determines at any of these points whether the animal can
still be alive. Finally, the animal can die because it is killed by other
animals.

The dependency between the canLive attribute of an animal on
its age and size can be expressed more declaratively by refactor-
ing the canLive method to a signal and turning age and size into
Scala vars, as shown in Figure 4b, Lines 1-2. This design comes
with a reduced number of events, simplifying the application. In
particular, technical events, which are not part of the application
logic disappear because changes of age and size are captured di-
rectly in the definition of canLive. The change operator in Line 10
converts a signal into an event and will be explained in details in
Section 3.2.2.

3.2 From Events to Signals and Back
RESCALA provides a rich API of functions for converting events to
signals and the other way around. The goal is to ensure that the
same abstraction/composition mechanisms uniformly apply over
them. Conversion functions also facilitate refactoring of code frag-
ments from one style to the other. The complete list of functions
supported by RESCALA is shown in the Appendix A. Due to lack
of space, in the following, we discuss only a subset of them that
is representative enough to give an intuition about the role and ex-
pressiveness of the API. As we discuss at the end of this section,
RESCALA also supports functions lifting to improve compatibility
of existing code with signals.

3.2.1 Integrating Events into Signals
Since RESCALA promotes a mixed OO and functional style, it is
important to manage state at the boundary between imperative and
functional fragments of applications. For this purpose, RESCALA

provides a set of functions for converting events into signals, so
that event-based imperative sub-computations can be wrapped up
and abstracted over in functional computations.

The basic function for converting events to signals is hold:
given an event e, the call e.hold() returns a signal representing the
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value exposed by the most recent occurrence of e. For illustration,
consider the code snippet in Figure 5, where a signal click.hold is
built to represent the last position in which the mouse was clicked.
Once defined, this signal encapsulates the imperative event and
can be composed with other signals and mutable values into more
complex signals. In Line 5, the mouse position is combined with
a circle that changes its position on the screen – modeled as a var

(Line 3) – to detect if the last click was on the circle1.

1 evt click: Event[(Int, Int)] = mouse.click
2 // circle = ((centerX, centerY), radius)
3 val circle: Var[(Int, Int),Int] = Var((1,1),10)
4 val lastClickOnCircle: Signal[Boolean] =
5 Signal{ over(click.hold(), circle()) }
6 val lastClick: Signal[(Int, Int)] = mouse.lastClick

Figure 5: hold at Work.

The conversion of events to signals by hold is stateless in the
sense that at any point in time the value of the resulting signal is in-
dependent of that signal’s previous history. For example the signal
click.hold in Figure 5 (Line 5), does not remember previous posi-
tions of the mouse. To model situations when the value of a signal
needs to depend on its previous values, RESCALA’s provides func-
tions for stateful conversion of events to signals – in the following,
we discuss three such functions: fold, list, and last(Int).

For illustration, suppose that we want to create a reactive value
to keep track of the number of mouse clicks. A possible encoding
based on events and reactions to events is shown in Figure 6a. The
variable nClick records the number of observed mouse clicks; it is
imperatively updated on any occurrence of the event click by the
reaction attached to that event (line 4). A signal can then rely on
nClick to react to the cumulative value. This solution has a number
of drawbacks. First, the design is unnecessarily complex because
it requires to register an imperative callback when a functional
definition is possible. Second, it exposes the state in the nClick

variable, so the programmer can accidentally modify its value.

1 evt click: Event[(Int, Int)] = mouse.click
2 val nClick = Var(0)
3

4 click += { => nClick() += 1 }

(a)

1 evt click: Event[(Int, Int)] = mouse.click
2 val nClick: Signal[Int] = click.fold(0)( (x, ) => x+1 )
3

(b)

Figure 6: Tracking State with Events (a) and Stateful Signals with
fold (b).

What is actually needed is a way to bridge between events and
signals in a stateful way, i.e., an operation that turns events into sig-
nals whose actual values depend on their past values. This is what
the fold function in RESCALA’s conversion API offers. With the
fold function the programmer directly specifies how the value of a
signal, that captures occurrences of an event, functionally depends
on its past values. An initial value can be assigned, otherwise at
the beginning the fold function evaluates to null. For illustration,
Figure 6b shows a code snippet that uses fold to encode the logic

1 In real programming practice, one would probably encapsulate this feature
in a signal tracking the position of the last click, directly available in the
mouse interface (Line 6).

in Figure 6a in a more concise declarative way. nClick is now en-
coded by accumulatively converting the event click to a signal.
The initial value for the accumulation is 0, while the accumulation
is encoded in the lambda passed as the second parameter to fold.

Unlike fold that composes the values in a signal’s history,
functions list and last just collect them into lists. Given an
event e, the call e.list() returns a signal modeling the whole
list of values produced by occurrences of e, while the e.last(n)

returns a signal modeling a sliding window over the last n values
exposed by occurrences of e. In Figure 7, list and last are used
to reify into signals the complete history of the positions of mouse
clicks (Line 2), respectively a sliding window over the last 5 values
(Line 3). The definition of the mean signal (Line 5) illustrates how
signals defined by list and last over the click event can be
used in the definition of more complex signals; mean computes the
average position over the last 5 clicks2.

1 evt click: Event[(Int, Int)] = mouse.click
2 val history: Signal[Seq[(Int,Int)]] = click.list()
3 val history5: Signal[Seq[(Int,Int)]] = click.last(5)
4

5 val mean = Signal {
6 val (x,y) = history5().unzip
7 val n = history5().length + 1
8 (x.sum/n, y.sum/n)
9 }

Figure 7: Abstracting over State with list/last(Int).

Figure 8 shows the same functionality implemented without
the support of conversion functions. The programmer needs to
introduce a var (Line 2) and a callback (Line 3). The callback
updates the var when the event occurs, so the depending signals
(Lines 6-9) are updated. The callback and the var are not part of
the application logic and serve the sole purpose of bridging events
and signals. The logic of the application is now spread among
the callback (adding the element to the list) and the definition of
each signal (slicing the last 5 elements). Even worse, the relation
between the click event and the history/history5 signal is not
explicit any more from the definition of those signals and must be
harvested from the control flow.

1 evt click: Event[(Int, Int)] = mouse.click
2 val historyV: Var[List[(Int,Int)]] = Var(List())
3 click += { clickPosition =>
4 historyV()= clickPosition :: historyV()
5 }
6 val history: Signal[List[(Int,Int)]] = Signal{ historyV() }
7 val history5: Signal[List[(Int,Int)]] =
8 Signal{ history.slice(0,5) }
9 val mean = Signal{

10 val (x,y) = history5().unzip
11 val n = history5().length + 1
12 (x.sum/n, y.sum/n)
13 }

Figure 8: Abstracting over State without Interface Functions Sup-
port.

3.2.2 Integrating Signals into Event-Driven Computations
RESCALA also provides a set of operations that enable to seamlessly
integrate signals into event-driven computations.

The most basic operation for converting signals to events is
changed(): Given a signal s, s.changed() triggers an event every

2 The unzip function takes a list of pairs and returns a pair of lists. Given
the input list [(li, ri), i ∈ (0..n)], unzip returns the lists [li, i ∈ (0..n)]
and [ri, i ∈ (0..n)].
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time the value of the signal is updated, enabling s to engage in
composite event expressions. For illustration, consider the code
snippet in Figure 4b. The refactored definition of canLive as a
signal must be integrated with the rest of the application, which
is in an event-driven style. Specifically, the canLive signal and the
killed event need to be composed in the definition of the complex
event shouldDie. This is achieved by using canLive.changed() to
bridge the worlds of signals and of the events (Line 10).

In addition to changed(), RESCALA provides functions for more
sophisticated integration of signals into event-driven computations.
In the following, we discuss two such operations: snapshot and
toggle. The snapshot function takes the instant value of a signal
whenever an event occurs. The toggle function switches back and
forth between two expressions of a signal when an event is raised.
In the following, we motivate and illustrate these functions by
examples.

To show the use of the snapshot function we further decompose
the interface of the mouse object. Like in the previous examples, the
signal mouse.position models a cursor’s current position, but now
the event mouse.clicked carries no value and only models clicks
form the user (Figure 9a). The snapshot function is applied to the
signal mouse.position (Line 3) to sample the position of the mouse
whenever the user clicks the button3. For comparison, Figure 9b,
shows the same functionality implemented without the snapshot

function.

1 evt clicked: Event[Unit] = mouse.clicked
2 val position: Signal[(Int,Int)] = mouse.position
3 val lastClick: Signal[(Int,Int)] = position snapshot clicked
4

(a)

1 evt clicked: Event[Unit] = mouse.clicked
2 val position: Signal[(Int,Int)] = mouse.position
3 val lastClickPos = Var(0,0)
4 val lastClick: Signal[(Int,Int)] = Signal{ lastClickPos() }
5 clicked += { =>
6 lastClickPos()= position()
7 }

(b)

Figure 9: snapshot at Work (a). Tracking the Position of Last Click
without snapshot (b).

The situation becomes worse when more reactive values are in-
volved. For illustration, consider an application that in reaction to
an event occurrence does not simply take a static snapshot of a re-
active value, but needs to switch between two reactive values a and
b returning alternatively one of them. This is the case e.g., with a
graphical application that models a bouncing ball. When the ball
reaches a border, the xBounce or the yBounce event occur and the
moving direction of the ball needs to be inverted. Compared to the
simple snapshotting discussed above, without proper support (Fig-
ure 10a), the developer would have even more complex callback
logic (Lines 14-16). The information about the currently active re-
active value (e.g. posSpeedX or negSpeedX) needs to be explicitly
tracked (Lines 11-12); an update of this information would also be
needed every time the event fires. Finally, the programmer has to
implement the switching logic (Lines 8-9). In summary, interfac-
ing events and signals by such a low-level programming activity
basically would annihilate the advantages of reactive values.

This accidental complexity can be avoided by using RESCALA’s
toggle function. For illustration, consider the code snippet in Fig-

3 snapshot is a method of Signal. Since Scala supports infix notation
for methods, in Figure 9a, snapshot is invoked on the position signal
passing clicked as a parameter.

ure 10b, where toggle is used in the context of the graphical ap-
plication that models a bouncing ball. The inversion of the moving
direction is encoded by switching the expression of the speedX and
speedY signals (Lines 3-4), from speed.x to -speed.x, respectively
from speed.y to -speed.y, whenever the events xBounce, respec-
tively yBounce are raised.

3.2.3 Lifting Functions on Ordinary Values to Functions on
Signals

To support gradual refactoring of applications to a more declara-
tive style, it is fundamental that existing code can be reused with
the abstractions introduced by RESCALA. To enforce compatibility
of reactive abstractions with existing components, RESCALA pro-
vides conversions that lift a value to the reactive counterpart. The
Signal.lift(f) function converts a function f: A=>B to a func-
tion operating on a reactive value Reactive[A] (either a signal or
a var) and returning a Signal[B]. As a result, computations ex-
pressed by traditional functions that operate on traditional values
can be turned into reactive computations operating on reactive val-
ues. In Figure 11, we show how the mean over the last mouse click
positions – presented in Figure 7 – can be encoded by leveraging a
regular mean function working on non-reactive values. The function
is lifted (Line 6) and then applied on the reactive values (Line 9).

While we expect that most of the conversions required by pro-
grammers are meant to use existing non reactive functions with re-
active values, RESCALA also supports the conversion in the opposite
direction. When a function expecting a reactive value is applied to
a traditional value, the value is automatically promoted – by using
Scala’s implicit conversions – to guarantee type compatibility.

4. Implementation
RESCALA is implemented as a completely new Scala library. The
user API of RESCALA provides both signals and events and sub-
sumes the event-based EScala interface. To explain why a complete
reimplementation is needed we briefly summarize the mechanism
behind EScala events.

The EScala event system is based on an event graph connect-
ing dependent events. Imperative events and implicit events are the
nodes without a predecessor, declarative events form the rest of the
graph. For example, if the e3 declarative event is defined by evt

e3 = e1 || e2, e1 and e2 are connected to e3 in the graph. Each
node maintains a list of the callbacks to execute in case the event
associated to the node fires. When a leaf event fires, the graph is
traversed in depth-first order starting from the firing event follow-
ing the connections among events. The callbacks attached to each
traversed event are collected. Finally, all handlers are executed in
non-deterministic order [15]. Unfortunately, this mechanism is not
suitable for signals. If signals are added, intermediate nodes rep-
resent signal expressions that depend on each other and must be
executed during the traversal – not only at the end, like event han-
dlers. In such a system, glitch freedom requires to control the order
of update propagation – as we explain shortly. For this reason, we
reimplemented the propagation system from scratch and used the
same interface of EScala for events. As a result, EScala programs,
that correctly do not rely on the order of handlers executions origi-
nated by the same change, are also RESCALA valid programs.

The RESCALA signal system is conceptually similar to exist-
ing implementations of other reactive languages [6, 19]. It is based
on a directed graph to track dependencies between values and to
keep them up-to-date. Dependencies are established in conjunction
with the evaluation of signal expressions. To enforce the correct up-
date order, the graph is topologically sorted and change propagation
proceeds in order from changed values to the values depending on
them. Topological sorting ensures glitch freedom [6], the property
of avoiding temporary violations of the constraints expressed by
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1 val speed = new Point(10,8)
2 evt xBounce,yBounce = ... // Events
3

4 val posSpeedX = Signal{ speed.x }
5 val posSpeedY = Signal{ speed.y }
6 val negSpeedX = Signal{ −speed.x }
7 val negSpeedY = Signal{ −speed.y }
8 val speedX = Signal{ if switchedX() posSpeedX() else negSpeedX() }
9 val speedY = Signal{ if switchedY() posSpeedY() else negSpeedY() }

10

11 val switchedX = Var(false)
12 val switchedY = Var(false)
13 xBounce += { =>
14 switchedX() = !switchedX()}
15 yBounce += { =>
16 switchedY() = !switchedY()}

(a)

1 val speed = new Point(10,8)
2 evt xBounce, yBounce = ... // Events
3 val speedX = Signal{speed.x}.toggle(xBounce){ −speed.x }
4 val speedY = Signal{speed.y}.toggle(yBounce){ −speed.y }

(b)

Figure 10: Bouncing Ball without toggle (a). Toggle Function at Work (b).

1 def mean(list: Seq[(Int,Int)]): (Double,Double) = {
2 val (x, y) = list.unzip
3 val n = list.length + 1.0
4 (x.sum / n, y.sum / n)
5 }
6 val meanR = Signal.lift(mean)
7 evt click = new ImperativeEvent[(Int, Int)]
8 val history = click.last(5)
9 val meanS = meanR(history)

Figure 11: Lifting of Traditional Functions.

signal expressions. For example, consider the dependencies estab-
lished by the following configuration of reactive values and signal
expressions:

1 val x = Var(1)
2 val y = Signal{ x() ∗ 2 }
3 val z = Signal{ x() ∗ 3 }
4 val t = Signal{ y() + z() }

Suppose that the value of x is updated to 2. Then y must be updated
to 4. If at this point t is updated, it evaluates to 5, which is clearly
wrong, since after updating z, the correct – and stable – value of t
is 10. To prevent such temporary values (i.e. glitches), nodes must
be updated in the correct order, in this case x-y-z-t. Compared to
EScala, a breadth-first traversal is needed (i). Signal expressions
must be evaluated inside signal nodes and the propagation must be
stopped in case a signal expression does not change its value (ii). As
node dependencies are discovered at runtime, topological sorting
cannot be guaranteed in advance and the graph must be restructured
when the topological order is violated (iii). Further details on this
technique can be found in the technical report [19] and references
therein.

RESCALA preserves glitch freedom inside signal-based depen-
dent computations and conversions between signals and events.
When the computation escapes the reactive system and involves
imperative events and callbacks, side effects can be performed. In
that case, like with other event-based languages, side effects can
establish data dependencies that are not under the control of the re-
active system and the user is responsible of performing the updates
in the correct order.

5. Validation
The main hypothesis that motivated RESCALA’s design is that the
fluid integration of events and signals by conversion functions con-
tributes to improved design quality of reactive object-oriented ap-

(a) (b)

(c) (d)

Figure 12: The Case Study Applications: Universe (a), ReactEdit
(b), ReactRSS (c), ReactShapes (d).

plications. To validate this hypothesis we performed a side-by-side
comparison of alternative designs of four reactive object-oriented
applications – designs using events only versus designs using the
combination of events and signals via conversion functions.

5.1 Experimental Set Up
Case Studies. Our validation benchmark suite consists of four
reactive OO applications (Figure 12), which were initially imple-
mented based on events only and afterwards refactored to introduce
signals integrated with events via conversion functions.

The Universe simulation [15] has been already presented in
the paper. The simulation evolves in rounds and the state of each
element at a given step is a function of the other elements and of
the state of the simulation in the previous step. This structure allows
one to express several aspects of the computation functionally.
However, the elements of the simulation are mutable objects that
encapsulate state, so the OO and the functional style must be
properly combined. A screenshot of this application is shown in
Figure 12a.

ReactEdit is a minimal text editor implementing functionalities
like text selection, line counting, and cutting-and-pasting of text. In
previous work [32], we analyzed a text editor provided as a wid-
get in the SWT graphic library, which is used, among other ap-
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Case Study LOC Callb. Events Signals

Universe

Events 466 17 8 0

Events+Signals 442 6 12 30

ReactEdit

Events 644 14 34 0

Events+Signals 632 10 36 22

ReactRSS

Events 599 16 41 0

Events+Signal 595 14 38 9

ReactShapes

Events 1161 17 30 0

Events+Signals 1160 5 56 30

Figure 13: Main Metrics for the Case Studies.

plications, in the Eclipse IDE. The analysis showed that a lot of
complexity in the code is due to a design of reactivity that favors
efficiency, requiring caching of intermediate values and incremen-
tal computations. ReactEdit is a minimal version of the SWT wid-
get, which is malleable to investigating various design alternatives
based on reactive abstractions4. A screenshot of this application is
shown in Figure 12b.

ReactRSS is a RSS feed reader displaying a list of channels,
which are periodically checked for updates. Fetched items are im-
mediately displayed to the user in a side bar. When the user selects
one of them, the HTML content is rendered in the main view. A
screenshot of this application is shown in Figure 12c.

ReactShapes is a small drawing program. The user can drag
and drop different shapes on a canvas, connect them with lines
and change the stroke width and the color of each shape. The
application supports an history and an undo function. Finally, the
drawing canvas can be shared with other clients that participate
in the same task from remote. A screenshot of this application is
shown in Figure 12d.

We selected the case studies to cover different kinds of reactive
behavior in common OO applications. In most cases, in desktop
software, reactivity originates from user interaction, e.g., mouse
movements or hitting a button on the keyboard. ReactEdit, Reac-
tRSS and ReactShapes cover this class of applications. Another
source of reactivity are asynchronous external events, like mes-
sages from the network. The ReactShapes and the ReactRSS appli-
cations implement this kind of functionality. Another common ex-
ample of reactive applications are synchronous simulations, where
at each round a change is propagated to all the entities in the appli-
cation. The Universe case study covers this case.

Research Questions and Methodology. The main question for
the validation was: Are designs based on the combinations of events
and signals better? We look at improved composability, i.e., in-
creased number of composable abstractions in code as an indica-
tion for better design. The secondary question is: If the designs are
improved, in what extent are the conversion functions involved in
this improvement. In the following, we demonstrate that the studied
refactorings do indeed improve composability and that conversion

4 Since the SWT widget amounts to∼10K LOCs of Java it was not feasible
for us to work on the original version.

functions play a key role in this respect. To answer this questions,
we followed a three-step process.

First, each case study was implemented with events and call-
backs. Second, the case studies were refactored to introduce sig-
nals and compositions thereof with events via the conversion func-
tions. Typically a refactoring concerned the reactivity for a certain
concern of the application, e.g., time management in the Universe
synchronous simulation or the palette to select the shape to draw in
the GUI of the ReactShapes application. The decision about which
concerns to refactor was made by looking at concerns involving
functionally dependent values. Those values are good candidates
for being expressed by signals. An example is time management in
the Universe application, as shown in Figure 2. On the contrary, a
criterion for rejecting a refactoring candidate was when a change
is conceptually modeled in a proper way by events. For example,
Figure 19 shows the select-all, copy and paste functionalities in
the ReactEdit application which are activated by pressing a button
in the UI (i.e. an event) and do not require composition. However,
computations that depend on events can still be good candidates for
refactoring. For example, building on top of events, we refactored
to a signal the fetching state of the React RSS application, as shown
in Figure 15 and discussed shortly. Finally, in a separate step, var-
ious metrics related to answering our research questions were cal-
culated for both versions. The first two steps were performed by
students not involved in the third step, which was performed by the
first author.

The calculated metrics are presented in Figures 13 and 14.
Figure 13 reports, for each version of each application, the non-
comment-non-space lines of code (LOCs) measured with CLOC5,
the number of callbacks, the number of observers/events, and the
number of signals. For each refactoring, we report more detailed
data in Figure 14 (there is a row in the table for each identified
refactoring; the concerns are listed in the last column of Figure 14).
Column Conv Funs shows the number of conversion functions used
in each refactoring, further discriminated in the number of conver-
sions from signals to events (column S→E) and conversions from
events to signals (column S→E). Data in the other columns char-
acterize the effect of each refactoring. Column Callb. shows the
number of callbacks that where removed after refactoring. When
counting signals and events we consider also the signals/event cre-
ated in intermediate computations (e.g., by a conversion function) if
not already counted elsewhere. Column Signals shows the number
of signals that are introduced in each refactoring; column Events
shows the number of removed/added events.

5.2 Improved Design
We measure the improvement of composability by calculating two
metrics. First, we observe that the number of non-composable ab-
stractions (callbacks) is reduced. Second, we observe that the num-
ber of composable reactive abstractions (signals and events) is in-
creased by the refactorings.

Removed Callbacks. Figure 14, Callbacks column, shows the
number of callbacks that where removed due to the introduction
of signals and the associated conversion functions. We observe a
systematic reduction of callbacks in the events+signals version of
each application by 44% on average.

Since callbacks do not return a value, they are not composable,
limiting extensibility and reuse. Conversion functions help reduc-
ing the amount of callbacks that are required in each application.
With events, a handler is necessary to perform the action associ-
ated to the event, which typically imperatively updates some val-
ues. Instead, by turning events into signals, we turn their exposed
values into reactive values that can freely be composed with other

5 httpc://cloc.sourceforge.net
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Case Study Conv Funs S → E E → S Signals Callb. Events Comp. Refactored Concern
(Signals+Events)

Universe
2 1 1 +11 -2 -1 +10 Activity of the creatures

10 5 5 +11 0 0 +11 Statistics

2 0 2 +3 -2 0 +3 Evolution and reproduction

9 8 1 +5 -7 +5 +10 Time management

ReactEdit 0 0 0 +7 -3 -3 +4 Statistics tracker

9 7 2 +15 -1 +5 +20 Caret position and selection

ReactRSS
5 4 1 +1 -2 0 +1 Network fetcher

2 0 2 +2 0 -2 0 RSS feeds store

6 5 1 +6 0 -1 +5 UI for items channels and status

ReactShapes

0 0 0 +6 -6 0 +6 State of the canvas

8 6 2 +7 0 +8 +15 Display information

2 1 1 +8 -1 +6 +14 UI for menus

1 1 0 +4 -2 +1 +5 History of executed commands

1 1 0 +4 -2 +2 +6 Panel for drawing shapes

1 0 1 +1 -1 +9 +10 Palette for shape selection

Total +58 +39 +19 +91 -29 +29 +120

Figure 14: Conversion Functions and their Effect in the Case Studies.

signal expressions. This enables dependencies of computations on
the occurrence of events and their exposed values to be expressed
declaratively and new event values to be automatically propagated
to those dependent computations.

Increased Number of Composable Abstractions. The results of
the analysis of the refactorings shown in Figure 14 demonstrate that
the refactorings enabled by interface functions increase the num-
ber of composable abstractions (Figure 14, Comp. column). Not
surprisingly, signals largely contribute to increased composability
(Figure 14, Signals column).

Overall, events increase in the refactorings (Figure 14, Events
column). This is due to two causes. First, in some cases signals are
not directly defined on top of existing events, but over a combi-
nation thereof. For example, in Figure 15 the before(fetch) and
the after(fetch) are combined and it is the composed event that
is converted to a signal. Second, in some refactorings, the signals
added by the refactorings need to interface with the existing event-
based part of the application, hence, events must be generated from
signals – as in the case discussed for Figure 16. However, we also
experienced cases in which events can be simply removed and re-
placed with signals.

5.3 Use of Conversion Functions
In this sub-section, we elaborate on the role of the conversion func-
tions in the improved design composability. Indeed, in all refactor-
ings, conversion functions are used in almost all the cases (Fig-
ure 14, second column). Exceptions are discussed at the end of
this section. To give an intuition of how conversion functions are
used, we graphically depict event-based applications as a graph
(Figure 18a), in which the nodes without a predecessor denote di-
rectly triggered events on which other events (indirectly) depend
(inner nodes of the graph).

From events to signals. Functions converting from events to sig-
nals are used to refactor some reactive functionality to signals, in
cases when reactivity originates from events, graphically depicted
in Figure 18c. For example, ReactRSS needs to fetch possible up-
dates from the monitored websites. Since the operation is time-
consuming, the application displays a message to the user. Fig-
ure 15 shows how a signal is used to express the ”fetching state”.
The source of reactivity are the implicit events before(fetch) and
the after(fetch) that express the begin and the end of the fetching
phase. After composing these events, the hold conversion function
is used to capture the state of the RSS fetcher.

1 lazy val fetcherState: Signal[String] =
2 ((before(fetch) map { => "Started fetching" }) | |
3 (after(fetch) map { => "Finished fetching" })) hold ""

Figure 15: Converting Events to Signals in a Refactoring.

From signals to events. Functions converting from a signal to an
event are used when some piece of reactive functionality that is
refactored to use signals still needs to interface to events, graphi-
cally depicted in Figure 18b. For illustration, we briefly discuss a
refactoring in the universe case study. The example refactoring is
about the time management concern, which was refactored to use
signals (Figure 2) with the advantages already discussed in Sec-
tion 2. However, the board on which the creatures move in the sim-
ulation is mutable and updated imperatively – a design typical of
OO style.

This solution allows each creature in the simulation to access the
board and change its state without carrying the board as a parameter
in each computation. Due to the imperative design of the board, the
signal-based time management must be converted to events before
interfacing with the board. In Figure 16, an event is obtained from
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1 time.hour.changed += {x =>
2 board.elements.foreach { match {
3 case (pos, be) =>
4 if(be.isDead.getVal)
5 board.clear(pos)
6 else be.doStep(pos)
7 } } }

Figure 16: Converting Signals to Events in a Refactoring.

1 val charCountLabel =
2 ReLabel(Signal { "Ch " + textArea.charCount() })

Figure 17: Use of Signals in the Graphic Interface.

the signal holding the current week through the changed function
(Line 1) that fires every new week. A handler attached to the event
imperatively removes the dead creatures form the board (Line 5)
and makes those evolve that are still alive (Line 6).

Exceptions. There are two refactorings in Figure 15 – namely
“Statistics tracker” and “State of the canvas” – that introduce sig-
nals without using conversion functions. We explain the reason for
this for the “Statistics tracker” refactoring of ReactEdit. The other
case in the ReactShapes case study is analogous, thus not further
discussed. The “Statistics tracker” refactoring focuses on the part
of the application concerned with displaying information on the
text currently edited, e.g., the number of characters and the num-
ber of lines in the text. These values, however, are already available
as signals, since the other refactoring of ReactEdit already intro-
duced signals in the model of the application (e.g., text storage
and caret position). For this reason, conversion functions are not
needed. Note however, that conversion functions are still required
in the second refactoring for the events that come from user in-
teraction, so they are indirectly required to enable the “Statistics
tracker” refactoring. In terms of Figure 18, the scenario discussed
in this paragraph corresponds to performing a (b) refactoring fol-
lowed by a (c) refactoring.

Still to answer is the question why, in the refactorings under
consideration (“Statistics tracker” and “State of the canvas”), the
conversions S→E are not needed either. Since the overall design
of the case studies is OO, the result of a signal-based computa-
tion typically produces a side effect at some point. This is usually
achieved by converting a signal to an event and binding a callback
to the latter – hence the expected use of S→E conversions. When
the information is displayed in the GUI, we also need to convert
from signals to events, since the Swing library [33] we use (and
OO graphic libraries in general) is based on events. Nevertheless,
S→E are not needed because we wrapped the classes of the Swing
library to directly support signals. For illustration, Figure 17 shows
an example of a Label, a widget that displays text. The widget is
directly attached to a signal when it is created and automatically
updates the text according to the changes of the signal. Internally,
this requires a conversion from signals to events, but this is encap-
sulated into the ReLabel class (Line 2) and does not appear in the
counting of conversion functions in Figure 15.

Discussion. The classification of refactorings discussed above –
signal to events vs. events to signals (i.e. Figure 18c vs. Figure 18b)
– is useful to capture the role of interface functions in the refactor-
ings. However, in practice, those cases are often mixed, and a single
refactoring comprises both. This circumstance can be inferred from
Figure 14 where in several refactorings both E→S and S→E con-
versions appear. The reason is that, in many cases, the refactoring

Change propagation

S to E
E to S

Signals
Events

(a)

(b)

(c)

Figure 18: Reafactoring Event-based Applications to use Signals.

1 selectAllButton.clicked +=
2 { => textArea.selectAll; textArea.requestFocus}
3 copyButton.clicked +={ => textArea.copy; textArea.requestFocus }
4 pasteButton.clicked +={ => textArea.paste; textArea.requestFocus }

Figure 19: User Interaction in the ReactEdit Case Study.

to signals is surrounded by the event based systems. As a result
the signal based computation introduced by the refactoring needs
to interface to events at some point – hence conversion functions
are needed in both directions.

One may wonder if the effect of conversion functions is simply
to turn each event into a signal and then back to an event, artificially
increasing the number of composable abstractions in Figure 14.
This is, however, not the case. In the events+signals implementa-
tions, there is significantly higher number of signals than conver-
sion functions (Figure 14, cf. column E→S and column Signals).
This means that conversion functions not only introduce signals by
turning events into signals, but enable more advanced refactorings
towards more declarative style, where signals can be further defined
as a composition of the existing ones.

6. Related work
Approaches closely related to RESCALA [6, 15, 17, 19, 25] were
already discussed in Section 2. In this section, we focus on the
approaches that are related to our research in a broader scope.

Functional-reactive programming was originally designed by
Elliott in Haskell [10]. FRP focuses on the abstract representa-
tion of continuous time in functional programs. More generally,
the term refers to language abstractions to support time-changing
values, like signals or event streams. Frappe [7] ports to Java the
ideas originally implemented in FRP and Haskell.

Constraint programming supports declarative relations among
program entities and automatically enforces their consistency. For
example the Kaleidoscope [12] and the graphical toolkits Gar-
net [26] and Amulet [27] allow the user to introduce constraints
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that are automatically satisfied by the framework. Compared to the
work in this paper, these languages only focus on updating depen-
dencies and do not include an advanced event system like the one
of RESCALA. SuperGlue [22] is a statically typed language that
allows one to specify constraints among Java components. To re-
duce coupling, Superglue supports quantification over component
types. The runtime is in charge of keeping constraints satisfied in
a way that resembles reactive programming. Unlike RESCALA and
other reactive programming approaches, Superglue focuses on con-
straints over components and not on composition of time-changing
computations.

Data-flow languages provide abstractions to manipulate streams
of values. Conceptually, these languages define nets of operators
connected with wires. Examples include Esterel [2] and Lucid [28].
They have a synchronous notion of time which resembles the de-
sign of our synchronous timers with contemporary events. Unlike
RESCALA, these languages focus on real-time requirements, pro-
viding boundaries to memory consumption and propagation time
at the cost of sacrificing language expressiveness.

Event-based languages support events as language abstractions.
EventJava [11] is a Java extension which borrows ideas from com-
plex event processing and composite event detection. It supports
event matching, predicate guarding, reaction to event combination
and event correlation. As a consequence, complex reactive behavior
can be expressed in a declarative way. Another event-based lan-
guage is Ptolemy [29]. Whereas the Observer pattern decouples
observables from observers, the latter still need to explicitly ref-
erence observables. Ptolemy specifically addresses this issue: an
object can register to events by referring to the event type instead
of referencing the subject that announces the event. Due to the
quantification over the event types, observers are decoupled from
observables. Finally, Rx [23] is a library originally developed for
.NET and ported to other platforms. Rx has received great attention
because it provides uniform abstractions, based on LINQ [24], for
event composition over heterogeneous sources.

Complex event processing is about performing queries to de-
tect patters on event streams. For example, TelegraphCQ [5], and
Cayuga [9] provide SQL-like queries over time-changing event
streams. These systems share with reactive programming the con-
cept of reacting to time-changing values and the declarative style
of functional relations [21]. However, they are based on SQL-like
query languages rather than integrating dedicated abstractions into
a general-purpose language.

Self-adjusting computation (e.g. [1]) is a programming tech-
nique that automatically derives an incremental version of a given
program. In self-adjusting computation, the program is initially ex-
ecuted to compute the result, then a mutator performs the updates
when the input changes. The focus of self-adjusting computation is
on efficient derivation of incremental algorithms, and not on raising
the level of abstraction via proper linguistic constructs. For exam-
ple, in self-adjusting computation, the programmer explicitly inter-
acts with the runtime to initiate the change propagation across the
dependencies.

Incremental and automatic update has been successfully applied
to data structures and queries. Due to this restricted domain, these
approaches can take advantage of techniques developed by research
in databases to keep views synchronized with the underlying ta-
bles [4]. Willis et al. [34] studied queries incrementalization over
mutable objects. Object fields are manually annotated and made
observable by using AspectJ. Finally, the framework is in charge
of tracking the updates and propagating the change to the query
result. Rothamel and Liu [30] propose a similar approach based
on code generation. While the general problem of incrementalizing
and automatically updating generic computations is still a research
challenge, incremental update and synchronization of data struc-

tures is currently implemented in libraries like Livelinq [18] and
GlazedList [16].

7. Summary and Future Work
In this work, we presented RESCALA, a language that seamlessly
integrates concepts from event-based programming and reactive
languages into object-oriented design. We analyzed the limitations
of both approaches and argued that their integration is fundamental
to support a mixed functional and OO paradigm. We showed that
RESCALA can effectively ameliorate the implementation of reactive
applications by fostering a declarative and functional style without
relinquishing the advantages of OO design. Finally we provided an
evaluation of the language.

In the future, we plan to continue the development of RESCALA.
We envisage several research directions. First, we plan to investi-
gate a more direct support of reactive behavior over mutable data by
integrating reactive data structures. Second, we want to introduce
abstractions from complex event processing like joins and elaborate
on matching over event patterns. Finally, we want to apply concepts
from reactive programming to the distributed setting. This direction
is promising since a huge amount of callbacks, commonly used to
react to events in publish-subscribe systems, can be potentially re-
placed by signals. A more detailed discussion – including the chal-
lenge of enforcing glitch-freedom in a distributed setting – can be
found in [31].
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A. Signals-events API
In this appendix, we show the RESCALA interface between signals
and events. When a signal and an event can be the receiver and an
argument, interchangeably, we show the function with the signal as
a receiver, i.e, exposed by the Signal trait.
– Creates a signal by folding events with a given function.
fold[T,A](e: Event[T], init: A)(f :(A,T)=>A): Signal[A]

– Returns a value computed by f on the occurrence of an event.
iterate[A](e: Event[ ], init: A)(f: A=>A) :Signal[A]

– Returns a signal holding the latest value of the event e.
hold[T](e: Event[T], init: T): Signal[T]

– Holds the latest value of an event as Some(val) or None.
holdOption[T](e: Event[T]): Signal[Option[T]]

– Returns a signal which holds the last n events.
last[T](e: Event[T], n: Int): Signal[Seq[T]]

– Collects the event values in a reactive list.
list[T](e: Event[T]): Signal[Seq[T]]

– Delays a signal by n change occurrences.
delay[T](n: Int): Signal[T]

– Counts the occurrences of an event.
count(e: Event[ ]): Signal[Int]

– On the event, sets the signal to one generated by the factory.
reset[T,A](e: Event[T], init: T)(f: (T)=>Signal[A]): Signal[A]

– Switches the value of the signal on the occurrence of e.
switchTo[U](e: Event[U]): Signal[U]

– Switches to a new signal once, on the occurrence of e.
switchOnce[T](e: Event[ ], newSignal: Signal[T]): Signal[T]

– Switches between signals on the event e.
toggle[T](e: Event[ ], other: Signal[T]): Signal[T]

– Returns a signal updated only when e fires.
snapshot[T](e: Event[ ]): Signal[T]
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