
Reactive Programming: a Walkthrough

Guido Salvaneschi
Technische Universität Darmstadt

salvaneschi@cs.tu-darmstadt.de

Alessandro Margara
Università della Svizzera italiana (USI)

alessandro.margara@usi.ch

Giordano Tamburrelli
Vrije University

g.tamburrelli@vu.nl

Abstract—Over the last few years, Reactive Programming has
emerged as the trend to support the development of reactive
software through dedicated programming abstractions. Reactive
Programming has been increasingly investigated in the program-
ming languages community and it is now gaining the interest of
practitioners. Conversely, it has received so far less attention
from the software engineering community.

This technical briefing bridges this gap through an accurate
overview of Reactive Programming, discussing the available
frameworks and outlining open research challenges with an
emphasis on cross-field research opportunities.

I. MOTIVATION

Many modern software systems are reactive: they respond

to the occurrence of events of interest by performing some

computation, which may in turn trigger new events. Examples

range from graphical user interfaces, which react to the input

of the users, to embedded systems, which react to the signals

coming from the hardware, to monitoring and control applica-

tions, which react to the changes in the external environment.
Designing, implementing, and maintaining reactive software

is arguably difficult. Indeed, reactive code is asynchronously

triggered by event occurrences. Because of this, it is hard to

trace and understand the control flow of the entire system [1].
Reactive Programming (RP) [2] is a recent programming

paradigm that supports the development of reactive applica-

tions through dedicated language abstractions. It is based on

concepts like time-varying values (a.k.a. signals or behaviors),

events streams to model discrete updates, automatic tracking

of dependencies, and automated propagation of change.
It is our belief that effective and well engineered reactive

systems require the combined efforts from practitioners as well

as researchers on programming language design and software

engineering.
Practitioners drive the requirements that RP languages and

framework should fulfill. Researchers on programming lan-

guages can integrate appropriate RP abstractions into lan-

guages to ease the development of reactive applications.

Finally, the software engineering community can conceive

frameworks and methodologies to successfully integrate RP

into the software development lifecycle.
RP has been increasingly investigated in the programming

languages community (e.g., [3]). Recently, initiatives like the

Reactive Manifesto [4] – yet considering RP in a significantly

broader sense compared to the research community – wit-

ness the gaining interest of practitioners. Conversely, RP has

received so far less attention from the software engineering

community.

This technical briefing moves from the above premises with

a twofold purpose: (i) present and promote RP concepts, chal-

lenges, and implementations to the software engineering com-

munity; (ii) stimulate innovative contributions in the design

and development of RP frameworks and reactive applications.

II. RP IN A NUTSHELL

The traditional approach to implement reactive applications

is the Observer design pattern that decouples event consumers

(observers) from event producers (observables). However, such

solution has been criticized for a long time (e.g., [1], [3]).

beacuse of lack of composability, inversion of the logical

relation among reactive entities and limited readability.

RP has been proposed to address these issues. To make the

discussion more concrete, we show an example in of how RP

models time-varying values, tracks dependencies, and auto-

mates change propagation. The following pseudocode snippet

receives the mouse.clicked event and the current mouse.position
time-changing value.

1 val clicked: Event[Unit] = mouse.clicked
2 val scaledPosition: Signal[(Int,Int)] = mouse.position ∗ 0.5
3 val lastClick: Signal[(Int,Int)] = clicked.snapshot(scaledPosition)

The position of the mouse is scaled by a 0.5 factor (Line 2)

and a snapshot of the position if taken every time the clicked
event occurs (Line 3). In conventional imperative program-

ming, any future change to the value of mouse.position does

not impact the value of scaledPosition. In RP, instead, Line 2

defines a constraint in the form y=f(x) rather than a statement.

The runtime identifies the dependency between scaledPosition
and mouse.position in Line 2 and ensures that scaledPosition gets

constantly updated to reflect the latest value of mouse.position.

Similarly, Line 3 defines a time-changing value containing the

scaled mouse position at the time of the last click. Also, Line 3

demonstrates the practical need to interface time-changing

values like scaledPosition with discrete events like clicked.

The potential of this mechanism is surprising. For example,

from an architectural viewpoint, the y and x entities in a

constraint can be, respectively, (part of) the View and the

Model in a MVC architecture. With RP, the View is auto-

matically updated by the runtime to reflect changes in the

Model. As a result, there are no bugs because of forgotten

updates, no redundant computations in case programmers code

defensively and update too much regardless it is necessary,

and applications are easily extensible as constraints can be

composed, i.e., built on top of other constraints.

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.303

953

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.303

953 ICSE 2015, Florence, Italy
Technical Briefings

Historically, RP was first proposed in the context of strictly

functional languages. Specifically, functional reactive pro-

gramming was first introduced in Haskell to support interactive

animations [5]. After the first experiences in Haskell, RP has

reached a wider audience being implemented in Scheme [6],

Javascript [3] and Scala [7], [8]. Since then, RP has become

increasingly popular. Concepts inspired by RP have been ap-

plied to Microsoft Reactive Extensions (Rx) [9] and stimulated

a significant number of novel popular front-end libraries such

as React.js, Bacon.js, Knockout, Meteor, and Reactive.coffee.

III. OUTLINE

The technical briefing starts with a description of the

requirements coming from modern reactive applications. It

introduces RP providing first an overview of its building

blocks and then diving into more advanced topics. Next, the

briefing shows some practical examples of the most relevant

off-the-shelf solutions for RP, pointing out their potentials and

differences. Finally, it discusses open challenges in the RP

domain from a software engineering perspective and outlines

synergies with related fields such as Cloud Computing and

Big Data [10]. The detailed outline of the technical briefing

is discussed hereafter.

1. Reactive applications: why and where? We show the

pervasiveness of reactive applications in modern software sys-

tems. Such applications range from Graphical User Interfaces

to distributed monitoring and control systems, from specific

Internet of Things scenarios to generic embedded systems.

2. Traditional approaches for reactivity. Before the advent of

RP, the demand for reactivity drove to the development of

dedicated approaches. In this part of the briefing, we present

traditional approaches for reactivity and we highlight their

limitations and how they motivated the development of RP.

3. RP for beginners. We present the core abstractions offered

by RP, namely time-varying variables, automated detection of

dependencies and propagation of updates. We discuss the main

benefits and the guarantees offered by this new programming

paradigm through comparative examples. We show how new

abstractions interface with existing solutions (e.g., events).

4. Advanced RP. In this part of the briefing, we explore

more advanced concepts. For example, we present the main

algorithms to support automated propagation of changes in RP.

We discuss the integration of RP with modern programming

languages, with an emphasis on the Object Oriented paradigm.

We present the benefits and challenges of exploiting RP for

distributed systems and mobile enviroments.

5. RP frameworks overview. This part of the briefing demos

three state of the art frameworks for RP: REScala [7], Rx [9],

and DREAM [11]. We discuss and compare the expressiveness

of these frameworks relying on simple but realistic reactive

applications.

6. Open challenges We conclude the briefing with an in-

teractive discussion on the open research and development

challenges in the area of RP. In particular, the discussion will
cover the integration of RP abstractions within programming

languages, the development of RP frameworks to support

distributed systems with heterogeneous requirements, and the

integration of RP within the software development lifecycle.

Finally, we will introduce the similarities with data-flow based

computational models currently adopted in Cloud Computing

and Big Data analytics and discuss the perspective on the

convergence of these fields.

IV. ABOUT THE ORGANIZERS

Guido Salvaneschi is a postdoctoral researcher at Technical

University of Darmstadt. He works on language design, es-

pecially for reactive applications. He developed the reactive

language REScala and (co-)authored papers on RP published

in OOPSLA, FSE, MODULARIY and DEBS.

Alessandro Margara is a postdoctoral researcher at Università

della Svizzera italiana (USI). He works in the area of dis-

tributed systems focusing on middleware for distributed event-

based systems. He developed the distributed RP framework

DREAM and (co-)authored papers on event-based and reactive

systems published in the IEEE Transactions of Parallel and

Distributed Systems, ICDCS, Middleware and DEBS.

Giordano Tamburrelli is assistant professor at Vrije University

in Amsterdam (VU), previously he has been Marie Curie

Fellow at Università della Svizzera italiana (USI). He works in

the area of software engineering with a focus on self-adaptive

systems and service oriented architectures. He (co-)authored

papers on interactive and mobile systems published in ICSE,

FSE, and other relevant conferences of the sector.

ACKNOWLEDGMENTS

This work is supported by the German Federal Ministry of

Education and Research (BMBF), grant No. 01IC12S01V.

REFERENCES

[1] I. Maier, T. Rompf, and M. Odersky, “Deprecating the Observer Pattern,”
Tech. Rep., 2010.

[2] E. Bainomugisha, A. L. Carreton, T. Van Cutsem, S. Mostinckx, and
W. De Meuter, “A survey on reactive programming,” ACM Comput.
Surv., 2012.

[3] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi, “Flapjax: a programming language
for Ajax applications,” ser. OOPSLA ’09. New York, NY, USA: ACM,
2009, pp. 1–20.

[4] Http://www.reactivemanifesto.org/.
[5] C. Elliott and P. Hudak, “Functional reactive animation,” ser. ICFP ’97.

New York, NY, USA: ACM, 1997, pp. 263–273.
[6] G. H. Cooper and S. Krishnamurthi, “Embedding dynamic dataflow in

a call-by-value language,” ser. ESOP’06. Berlin, Heidelberg: Springer-
Verlag, 2006, pp. 294–308.

[7] G. Salvaneschi, G. Hintz, and M. Mezini, “Rescala: Bridging between
object-oriented and functional style in reactive applications,” ser. MOD-
ULARITY ’14. New York, NY, USA: ACM, 2014, pp. 25–36.

[8] I. Maier and M. Odersky, “Higher-order reactive programming with
incremental lists,” ser. ECOOP’13. Berlin, Heidelberg: Springer-Verlag,
2013, pp. 707–731.

[9] J. Liberty and P. Betts, Programming Reactive Extensions and LINQ,
1st ed. Berkely, CA, USA: Apress, 2011.

[10] G. Salvaneschi, P. Eugster, and M. Mezini, “Programming with implicit
flows,” Software, IEEE, vol. 31, no. 5, pp. 52–59, Sept 2014.

[11] A. Margara and G. Salvaneschi, “We have a DREAM: Distributed
reactive programming with consistency guarantees,” ser. DEBS ’14.
New York, NY, USA: ACM, 2014, pp. 142–153.

954954 ICSE 2015, Florence, Italy
Technical Briefings

