
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt
oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
CLightweight, Flexible Object-Oriented Generics

Yizhou Zhang∗ Matthew C. Loring∗ Guido Salvaneschi†

Barbara Liskov‡ Andrew C. Myers∗
∗Cornell University, USA †TU Darmstadt, Germany ‡MIT, USA

yizhou@cs.cornell.edu mcl83@cornell.edu salvaneschi@cs.tu-darmstadt.de
liskov@csail.mit.edu andru@cs.cornell.edu

Abstract
The support for generic programming in modern object-oriented
programming languages is awkward and lacks desirable expressive
power. We introduce an expressive genericity mechanism that adds
expressive power and strengthens static checking, while remaining
lightweight and simple in common use cases. Like type classes and
concepts, the mechanism allows existing types to model type con-
straints retroactively. For expressive power, we expose models as
named constructs that can be defined and selected explicitly to wit-
ness constraints; in common uses of genericity, however, types im-
plicitly witness constraints without additional programmer effort.
Models are integrated into the object-oriented style, with features
like model generics, model-dependent types, model enrichment,
model multimethods, constraint entailment, model inheritance, and
existential quantification further extending expressive power in an
object-oriented setting. We introduce the new genericity features
and show that common generic programming idioms, including cur-
rent generic libraries, can be expressed more precisely and con-
cisely. The static semantics of the mechanism and a proof of a key
decidability property can be found in an associated technical report.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism, Con-
straints; D.3.2 [Language Classifications]: Object-oriented lan-
guages; F.3.2 [Semantics of Programming Languages]

Keywords Genus; generic programming; constraints; models

1. Introduction
Generic programming provides the means to express algorithms and
data structures in an abstract, adaptable, and interoperable form.
Specifically, genericity mechanisms allow polymorphic code to ap-
ply to different types, improving modularity and reuse. Despite
decades of work on genericity mechanisms, current OO languages
still offer an unsatisfactory tradeoff between expressiveness and us-
ability. These languages do not provide a design that coherently in-
tegrates desirable features—particularly, retroactive extension and
dynamic dispatch. In practice, existing genericity mechanisms force

Copyright c© ACM, 2015. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The defini-
tive version was published in PLDI’15, June 13–17, 2015, Portland, OR, USA.
http://dx.doi.org/10.1145/2737924.2738008.

developers to circumvent limitations in expressivity by using awk-
ward, heavyweight design patterns and idioms.

The key question is how to expose the operations of type pa-
rameters in a type-safe, intuitive, and flexible manner within the
OO paradigm. The following somewhat daunting Java signature for
method Collections::sort illustrates the problem:
<T extends Comparable<? super T>> void sort(List<T> l)

The subtyping constraint constrains a type parameter T using the
Comparable interface, ensuring that type T is comparable to itself
or to one of its supertypes. However, sort can only be used on a
type T if that type argument is explicitly declared to implement the
Comparable interface. This restriction of nominal subtyping is alle-
viated by structural constraints as introduced by CLU [22, 23] and
applied elsewhere (e.g., [10, 12]), but a more fundamental limitation
remains: items of type T cannot be sorted unless T has a compareTo
operation to define the sort order. That limitation is addressed by
type classes in Haskell [41]. Inspired by Haskell, efforts have been
made to incorporate type classes into OO languages with language-
level support [33, 37, 39, 43] and the Concept design pattern [30].
However, as we argue, these designs do not fully exploit what type
classes and OO languages have to offer when united.

This paper introduces a new genericity mechanism, embodied in
a new extension of Java called Genus. The genericity mechanism
enhances expressive power, code reuse, and static type safety, while
remaining lightweight and intuitive for the programmer in common
use cases. Genus supports models as named constructs that can be
defined and selected explicitly to witness constraints, even for prim-
itive type arguments; however, in common uses of genericity, types
implicitly witness constraints without additional programmer effort.
The key novelty of models in Genus is their deep integration into
the OO style, with features like model generics, model-dependent
types, model enrichment, model multimethods, constraint entail-
ment, model inheritance, and existential quantification further ex-
tending expressive power in an OO setting.

The paper compares Genus to other language designs; describes
its implementation; shows that Genus enables safer, more concise
code through experiments that use it to reimplement existing generic
libraries; and presents performance measurements that show that a
naive translation from Genus to Java yields acceptable performance
and that with simple optimizations, Genus can offer very good
performance. A formal static semantics for a core version of Genus
is available in the technical report [44], but omitted here due to lack
of space; there we show that termination of default model resolution
holds under reasonable syntactic restrictions.

2. The Need for Better Genericity
Prior work has explored various approaches to constrained generic-
ity: subtyping constraints, structural matching, type classes, and de-
sign patterns. Each of these approaches has significant weaknesses.

1

class AbstractVertex
<EdgeType extends

AbstractEdge<EdgeType, ActualVertexType>,
ActualVertexType extends
AbstractVertex<EdgeType, ActualVertexType>> {...}

class AbstractEdge
<ActualEdgeType extends

AbstractEdge<ActualEdgeType, VertexType>,
VertexType extends
AbstractVertex<ActualEdgeType, VertexType>> {...}

Figure 1: Parameter clutter in generic code.

class TreeSet<T> implements Set<T> {
TreeSet(Comparator<? super T> comparator) {...} ...

}
interface Comparator<T> { int compare(T o1, T o2); }

Figure 2: Concept design pattern.

The trouble with subtyping. Subtyping constraints are used in
Java [5], C# [14, 21], and other OO languages. In the presence of
nominal subtyping, subtyping constraints are too inflexible: they
can only be satisfied by classes explicitly declared to implement
the constraint. Structural subtyping and matching mechanisms (e.g.,
[10, 12, 23, 26]) do not require an explicit declaration that a con-
straint is satisfied, but still require that the relevant operations exist,
with conformant signatures. Instead, we want retroactive modeling,
in which a model (such as a type class instance [41]) can define how
an existing type satisfies a constraint that it was not planned to sat-
isfy ahead of time.

Subtyping constraints, especially when F-bounded [7], also tend
to lead to complex code when multiple type parameters are needed.
For example, Figure 1 shows a simplification of the signatures
of the classes AbstractVertex and AbstractEdge in the FindBugs
project [15]. The vertex and the edge types of a graph have a mutual
dependency that is reflected in the signatures in an unpleasantly
complex way (See Figure 3 for our approach).

Concept design pattern. Presumably because of these limitations,
the standard Java libraries mostly do not use constraints on the pa-
rameters of generic classes in the manner originally envisioned [5].
Instead, they use a version of the Concept design pattern [27] in
which operations needed by parameter types are provided as ar-
guments to constructors. For instance, a constructor of TreeSet, a
class in the Java collections framework, accepts an object of the
Comparator class (Figure 2). The compare operation is provided by
this object rather than by T itself.

This design pattern provides missing flexibility, but adds new
problems. First, a comparator object must be created even when
the underlying type has a comparison operation. Second, because
the model for Comparator is an ordinary (first-class) object, it is
hard to specialize or optimize particular instantiations of generic
code. Third, there is no static checking that two TreeSets use the
same ordering; if an algorithm relies on the element ordering in two
TreeSets being the same, the programmer may be in for a shock.

In another variant of the design pattern, used in the C++
STL [25], an extra parameter for the class of the comparator dis-
tinguishes instantiations that use different models. However, this
approach is more awkward than the Comparator object approach.
Even the common case, in which the parameter type has exactly
the needed operations, is just as heavyweight as when an arbitrary,
different operation is substituted.

Type classes and concepts. The limitations of subtyping con-
straints have led to recent research on adapting type classes to
OO languages to achieve retroactive modeling [37]. However,
type classes have limitations: first, constraint satisfaction must be
uniquely witnessed, and second, their models define how to adapt

a single type, whereas in a language with subtyping, each adapted
type in general represents all of its subtypes.

No existing approach addresses the first limitation, but an at-
tempt is made by JavaGI [43] to fit subtyping polymorphism and dy-
namic dispatch into constrained genericity. As we will argue (§5.1),
JavaGI’s limited dynamic dispatch makes certain constraints hard to
express, and interactions between subtyping and constraint handling
make type checking subject to nontermination.

Beyond dynamic dispatch, it is important for OO programming
that extensibility applies to models as well. The essence of OO
programming is that new behavior can be added later in a modular
way; we consider this post-factum enrichment of models to be a
requirement.

Goals. What is wanted is a genericity mechanism with multiple
features: retroactive modeling, a lightweight implicit approach for
the common case, multiparameter type constraints, non-unique con-
straint satisfaction with dynamic, extensible models, and model-
dependent types. The mechanism should support modular compila-
tion. It should be possible to implement the mechanism efficiently;
in particular, an efficient implementation should limit the use of
wrapper objects and should be able to specialize generic code to par-
ticular type arguments—especially, to primitive types. Genus meets
all of these goals. We have tried not only to address the immediate
problems with generics seen in current OO languages, but also to
take further steps, adding features that support the style of program-
ming that we expect will evolve when generics are easier to use than
they are now.

3. Type Constraints in Genus
3.1 Type Constraints as Predicates
Instead of constraining types with subtyping, Genus uses explicit
type constraints similar to type classes. For example, the constraint

constraint Eq[T] {
boolean equals(T other);

}

requires that type T have an equals method.1 Although this con-
straint looks like a Java interface, it is really a predicate on types,
like a (multiparameter) type class in Haskell [32]. We do not call
constraints “type classes” because there are differences and because
the name “class” is already taken in the OO setting.

Generic code can require that actual type parameters satisfy con-
straints. For example, here is the Set interface in Genus (simplified):

interface Set[T where Eq[T]] { ... }

The where clause “where Eq[T]” establishes the ability to test
equality on type T within the scope of Set. Consequently, an in-
stantiation of Set needs a witness that Eq is satisfied by the type
argument. In Genus, such witnesses come in the form of models.
Models are either implicitly chosen by the compiler or explicitly
supplied by the programmer.

Multiparameter constraints. A constraint may be a predicate over
multiple types. Figure 3 contains an example in which a constraint
GraphLike[V,E] declares graph operations that should be satisfied
by any pair of types [V,E] representing vertices and edges of a
graph. In a multiparameter constraint, methods must explicitly de-
clare receiver types (V or E in this case). Every operation in this con-
straint mentions both V and E; none of the operations really belongs
to any single type. The ability to group related types and operations
into a single constraint leads to code that is more modular and more
readable than that in Figure 1.

1 We denote Genus type parameters using square brackets, to distinguish
Genus examples from those written in other languages (especially, Java).

2

// A multiparameter constraint
constraint GraphLike[V,E] {
Iterable[E] V.outgoingEdges();
Iterable[E] V.incomingEdges();
V E.source();
V E.sink();

}

constraint OrdRing[T]
extends Comparable[T]

{
// static methods
static T T.zero();
static T T.one();
T T.plus(T that);
T T.times(T that);

}

Figure 3: Constraints GraphLike and OrdRing.

Map[V,W] SSSP[V,E,W](V s)
where GraphLike[V,E], Weighted[E,W],

OrdRing[W], Hashable[V] {
TreeMap[W,V] frontier = new TreeMap[W,V]();
Map[V,W] distances = new HashMap[V,W]();
distances.put(s, W.one()); frontier.put(W.one(), s);
while (frontier.size() > 0) {
V v = frontier.pollFirstEntry().getValue();
for (E vu : v.outgoingEdges()) {
V u = vu.sink();
W weight = distances.get(v).times(vu.weight());
if (!distances.containsKey(u) ||

weight.compareTo(distance.get(u)) < 0) {
frontier.put(weight, u);
distances.put(u, weight);

}}} return distances; }

Figure 4: A highly generic method for Dijkstra’s single-source shortest-path
algorithm. Definitions of Weighted and Hashable are omitted. Ordering and
composition of distances are generalized to an ordered ring. (A more robust
implementation might consider using a priority queue instead of TreeMap.)

Prerequisite constraints. A constraint can have other constraints
as its prerequisites. For example, Eq[T] is a prerequisite constraint
of Comparable[T]:

constraint Comparable[T] extends Eq[T] {
int compareTo(T other);

}

To satisfy a constraint, its prerequisite constraints must also
be satisfied. Therefore, the satisfaction of a constraint entails the
satisfaction of its prerequisites. For example, the Genus version of
the TreeSet class from Figure 2 looks as follows:

class TreeSet[T where Comparable[T]] implements Set[T] {
TreeSet() { ... } ...

}

The type Set[T] in the definition of TreeSet is well-formed because
its constraint Eq[T] is entailed by the constraint Comparable[T].

Static constraint members. Constraints can require that a type
provide static methods, indicated by using the keyword static in
the method declaration. In Figure 3, constraint OrdRing specifies a
static method (zero) that returns the identity of the operation plus.

All types T are also automatically equipped with a static method
T.default() that produces the default value for type T. This method
is called, for instance, to initialize the elements of an array of type
T[]. The ability to create an array of type T[] is often missed in Java.

3.2 Prescribing Constraints Using Where Clauses
Where-clause constraints enable generic algorithms, such as the
version of Dijkstra’s shortest-path algorithm in Figure 4, generalized
to ordered rings.2 The where clause of SSSP requires only that
the type arguments satisfy their respective constraints—no subtype
relationship is needed.

2 The usual behavior is achieved if plus is min, times is +, and one is 0.

Where-clause constraints endow typing contexts with assump-
tions that the constraints are satisfied. So the code of SSSP can make
method calls like vu.sink() and W.one(). Note that the where clause
may be placed after the formal parameters as in CLU; this notation
is just syntactic sugar for placing it between the brackets.

Unlike Java extends clauses, a where clause is not attached to a
particular parameter. It can include multiple constraints, separated
by commas. Each constraint requires a corresponding model to be
provided when the generic is instantiated. To allow models to be
identified unambiguously in generic code, each such constraint in
the where clause may be explicitly named as a model variable.

Another difference from Java extends clauses is that a where
clause may be used without introducing a type parameter. For ex-
ample, consider the remove method of List. Expressive power is
gained if its caller can specify the notion of equality to be used,
rather than requiring List itself to have a built-in notion of equality.
Genus supports this genericity by allowing a constraint Eq[E] to be
attached to remove:

interface List[E] {
boolean remove(E e) where Eq[E]; ...

}

We call this feature model genericity.

3.3 Witnessing Constraints Using Models
As mentioned, generic instantiations require witnesses that their
constraints are satisfied. In Genus, witnesses are provided by mod-
els. Models can be inferred—a process we call default model
resolution—or specified explicitly, offering both convenience in
common cases and expressivity when needed. We start with the use
of models and leave the definition of models until §4.

Using default models. It is often clear from the context which
models should be used to instantiate a generic. For instance, the
Set[T] interface in the TreeSet example (§3.1) requires no further
annotation to specify a model for Eq[T], because the model can be
uniquely resolved to the one promised by Comparable[T].

Another common case is that the underlying type already has
the required operations. This case is especially likely when classes
are designed to support popular operations; having to supply models
explicitly in this case would be a nuisance. Therefore, Genus allows
types to structurally conform to constraints. When the methods of
a type have the same names as the operations required by a con-
straint, and also have conformant signatures, the type automatically
generates a natural model that witnesses the constraint. For exam-
ple,3 the type Set[String] means a Set that distinguishes strings
using String’s built-in equals method. Thus, the common case in
which types provide exactly the operations required by constraints
is simple and intuitive. In turn, programmers have an incentive to
standardize the names and signatures of popular operations.

Genus supports using primitive types as type arguments, and
provides natural models for them that contain common methods.
For example, a natural model for Comparable[int] exists, so types
like TreeSet[int] that need that model can be used directly.

Default models can be used to instantiate any generic—not just
generic classes. For example, consider this sort method:

void sort[T](List[T] l) where Comparable[T] { ... }

The call sort(x), where x is a List[int], infers int both as the
type argument and as the default model. Default model resolution,
and more generally, type and model inference, are discussed further
in §4.4 and §4.7.

3 We assume throughout that the type String has methods “boolean
equals(String)” and “int compareTo(String).”

3

Using named models. It is also possible to explicitly supply mod-
els to witness constraints. To do so, programmers use the with
keyword followed by models for each of the where-clause con-
straints in the generic. These models can come from programmer-
defined models (§4) or from model variables declared in where
clauses (§3.2). For example, suppose model CIEq tests String equal-
ity in a case-insensitive manner. The type Set[String with CIEq]
then describes a Set in which all strings are distinct without case-
sensitivity. In fact, the type Set[String] is syntactic sugar for
Set[String with String], in which the with clause is used to ex-
plicitly specify the natural model that String automatically gener-
ates for Eq[String].

A differentiating feature of our mechanism is that different mod-
els for Eq[String] can coexist in the same scope, allowing a generic
class like Set, or a generic method, to be instantiated in more than
one way in a scope:

Set[String] s0 = ...;
Set[String with CIEq] s1 = ...;
s1 = s0; // illegal assignment: different types.

The ordering that an instantiation of Set uses for its elements is
part of the type, rather than a purely dynamic argument passed to
a constructor as in the Concept pattern. Therefore, the final assign-
ment statement is a static type error. The type checker catches the
error because the different models used in the two Set instantiations
allow Sets using different notions of equality to be distinguished.
The use of models in types is discussed further in §4.5.

It is also possible to express types using wildcard models; the
type Set[String with ?] is a supertype of both Set[String] and
Set[String with CIEq]. Wildcard models are actually syntactic
sugar for existential quantification (§6).

4. Models
Models can be defined explicitly to allow a type to satisfy a con-
straint when the natural model is nonexistent or undesirable. For
example, the case-insensitive string equality model CIEq can be de-
fined concisely:

model CIEq for Eq[String] {
bool equals(String str) {
return equalsIgnoreCase(str);

}
}

Furthermore, a model for case-insensitive String ordering might
be defined by reusing CIEq via model inheritance, to witness the
prerequisite constraint Eq[String]:

model CICmp for Comparable[String] extends CIEq {
int compareTo(String str) {
return compareToIgnoreCase(str);

}
}

It is also possible for CICmp to satisfy Eq by defining its own equals
method. Model inheritance is revisited in §5.3.

Models are immutable: they provide method implementations
but do not have any instance variables. Models need not have global
scope; modularity is achieved through the Java namespace mecha-
nism. Similarly, models can be nested inside classes and are subject
to the usual visibility rules.

4.1 Models as Expanders
Operations provided by models can be invoked directly, provid-
ing the functionality of expanders [42]. For example, the call
"x".(CIEq.equals)("X") uses CIEq as the expander to test equality
of two strings while ignoring case. Natural models can similarly be
selected explicitly using the type name: "x".(String.equals)("X").

constraint Cloneable[T] { T clone(); }
model ArrayListDeepCopy[E] for Cloneable[ArrayList[E]]

where Cloneable[E] {
ArrayList[E] clone() {
ArrayList[E] l = new ArrayList[E]();
for (E e : this) { l.add(e.clone()); }
return l;

}}

Figure 5: A parameterized model.

model DualGraph[V,E] for GraphLike[V,E]
where GraphLike[V,E] g {

V E.source() { return this.(g.sink)(); }
V E.sink() { return this.(g.source)(); }
Iterable[E] V.incomingEdges() {
return this.(g.outgoingEdges)(); }

Iterable[E] V.outgoingEdges() {
return this.(g.incomingEdges)(); }

}

void SCC[V,E](V[] vs) where GraphLike[V,E] g { ...

new DFIterator[V,E with g]() ...

new DFIterator[V,E with DualGraph[V,E with g]]() ...
}

class DFIterator[V,E] where GraphLike[V,E] {...}

Figure 6: Kosaraju’s algorithm. Highlighted code is inferred if omitted.

Using models as expanders is an integral part of our genericity
mechanism: the operations promised by where-clause constraints
are invoked using expanders. In Figure 4, if we named the where-
clause constraint GraphLike[V,E] with model variable g, the call
vu.sink() would be sugar for vu.(g.sink)() with g being the
expander. In this case, the expander can be elided because it can
be inferred via default model resolution (§4.4).

4.2 Parameterized Models
Model definitions can be generic: they can be parameterized with
type parameters and where-clause constraints. For example, model
ArrayListDeepCopy (Figure 5) gives a naive implementation of
deep-copying ArrayLists. It is generic with respect to the element
type E, but requires E to be cloneable.

As another example, we can exploit model parameterization to
implement the transpose of any graph. In Figure 6, the DualGraph
model is itself a model for GraphLike[V,E], and is parameterized
by another model for GraphLike[V,E] (named g). It represents the
transpose of graph g by reversing its edge orientations.

4.3 Non-Uniquely Witnessing Constraints
Previous languages with flexible type constraints, such as Haskell,
JavaGI, and G, require that witnesses be unique at generic instanti-
ations, whether witnesses are scoped globally or lexically. By con-
trast, Genus allows multiple models witnessing a given constraint
instantiation to coexist in the same context. This flexibility increases
expressive power.

For example, consider Kosaraju’s algorithm for finding strongly
connected components in a directed graph [2]. It performs two
depth-first searches, one following edges forward, and the other
on the transposed graph, following edges backward. We would like
to reuse the same generic depth-first-search algorithm on the same
graph data structure for both traversals.

In Figure 6, the where clause of SCC introduces into the context a
model for GraphLike[V,E], denoted by model variable g. Using the
DualGraphmodel, the algorithm code can then perform both forward
and backward traversals. It instantiates DFIterator, an iterator class
for depth-first traversal, twice, with the original graph model g and
with the transposed one. Being able to use two different models to
witness the same constraint instantiation in SCC enables more code

4

reuse. The highlighted with clauses can be safely elided, which
brings us to default model resolution.

4.4 Resolving Default Models
In Genus, the omission of a with clause triggers default model
resolution. Default model resolution is based on the following four
ways in which models are enabled as potential default choices. First,
types automatically generate natural models when they structurally
conform to constraints. Natural models, when they exist, are always
enabled as default candidates. Second, a where-clause constraint
enables a model within the scope of the generic to which the where
clause is attached. For example, in method SCC in Figure 6 the where
clause enables a model as a default candidate for GraphLike[V,E]
within SCC. Third, a use declaration, e.g.,

use ArrayListDeepCopy;

enables the specified model as a potential default way to clone
ArrayLists in the compilation unit in which the declaration resides.
Fourth, a model itself is enabled as a potential default model within
its definition.

Default model resolution works as follows:
1. If just one model for the constraint is enabled, it becomes the

default model.
2. If more than one model is enabled, programmer intent is am-

biguous. In this case, Genus requires that programmers make
their intent explicit using a with clause. Omitting the with clause
is a static error in this case.

3. If no model is explicitly enabled, but there is in scope a single
model for the constraint, that model becomes the default model
for the constraint.

Resolution for an elided expander in a method call works similarly.
The only difference is that instead of searching for a model that wit-
nesses a constraint, the compiler searches for a model that contains
a method applicable to the given call. In typical use, this would be
the natural model.

These rules for default models make generics and expanders
easy to use in the common cases; in the less common cases where
there is some ambiguity about which model to use, they force the
programmer to be explicit and thereby help prevent hard-to-debug
selection of the wrong model.

Letting each compilation unit choose its own default models is
more flexible and concise than using Scala implicits, where a type-
class instance can only be designated as implicit at the place where it
is defined, and implicit definitions are then imported into the scope,
with a complex process used to find the most specific implicit among
those imported [29]. We aim for simpler rules.

Genus also achieves the conciseness of Haskell type classes be-
cause uniquely satisfying models are allowed to witness constraints
without being enabled, just as a unique type class instance in Haskell
satisfies its type class without further declarations. But natural mod-
els make the mechanism lighter-weight than in Haskell, and the abil-
ity to have multiple models adds expressive power (as in the SCC
example in Figure 6).

4.5 Models in Types
Section 3.3 introduced the ability to instantiate generic types with
models, which become part of the type (i.e., model-dependent
types). Type safety benefits from being able to distinguish instanti-
ations that use different models.

The addFromSorted method in TreeSet (Figure 7) adds all el-
ements in the source TreeSet to this one. Its signature requires
that the source TreeSet and this one use the same ordering. So
a TreeSet with a different ordering cannot be accidentally passed to
this method, avoiding a run-time exception.

class TreeSet[T] implements Set[T with c]
where Comparable[T] c {

TreeSet() {...}
void addAll(Collection[? extends T] src) {

if (src instanceof TreeSet[? extends T with c]) {

addFromSorted((TreeSet[? extends T with c])src);
} else {...}

}

void addFromSorted(TreeSet[? extends T with c] src) {
... // specialized code in virtue of the same

// ordering in src and this
} ... }

Figure 7: TreeSet in Genus. Highlighted code is inferred if omitted.

Including the choice of model as part of the type is unusual,
perhaps because it could increase annotation burden. Models are
not part of types in the Concept design pattern (e.g., as realized in
Scala [30]), because type class instances are not part of instantiated
types. G [37] allows multiple models for the same constraint to
be defined in one program (albeit only one in any lexical scope),
yet neither at compile time nor at run time does it distinguish
generic instantiations with distinct models. This raises potential
safety issues when different modules interoperate.

In Genus, the concern about annotation burden is addressed by
default models. For example, the type TreeSet[? extends T] in
Figure 7 is implicitly instantiated with the model introduced by the
where clause (via constraint entailment, §5.2). By contrast, Scala
implicits work for method parameters, but not for type parameters
of generic classes.

4.6 Models at Run Time
Unlike Java, whose type system is designed to support implement-
ing generics via erasure, Genus makes models and type arguments
available at run time. Genus allows testing the type of an object from
a parameterized class at run time, like the instanceof test and the
type cast in Figure 7.

Reifiability creates opportunities for optimization. For example,
consider TreeSet’s implementation of the addAll method required
by the Collection interface. In general, an implementation cannot
rely on seeing the elements in the order expected by the destination
collection, so for each element in the source collection, it must tra-
verse the destination TreeSet to find the correct position. However,
if both collections use the same ordering, the merge can be done in a
more asymptotically efficient way by calling the specialized method
addFromSorted.

4.7 Default Model Resolution: Algorithmic Issues
Recursive resolution of default models. Default model resolution
is especially powerful because it supports recursive reasoning. For
example, the use declaration in §4.4 is syntactic sugar for the fol-
lowing parameterized declaration:

use [E where Cloneable[E] c] ArrayListDeepCopy[E with c]
for Cloneable[ArrayList[E]];

The default model candidacy of ArrayListDeepCopy is valid for
cloning objects of any instantiated ArrayList type, provided that the
element type satisfies Cloneable too. Indeed, when the compiler in-
vestigates the use of ArrayListDeepCopy to clone ArrayList[Foo],
it creates a subgoal to resolve the default model for Cloneable[Foo].
If this subgoal fails to be resolved, ArrayListDeepCopy is not con-
sidered as a candidate.

Recursive resolution may not terminate without additional re-
strictions. As an example, the declaration “use DualGraph;” is ille-
gal because its recursive quest for a model of the same constraint
causes resolution to cycle. The issue is addressed in §9 and the tech-
nical report [44] by imposing syntactic restrictions.

5

When a use declaration is rejected by the compiler for violat-
ing the restrictions, the programmer always has the workaround
of explicitly selecting the model. By contrast, the inability to do
so in Haskell or JavaGI makes it impossible to have a model like
DualGraph in these languages.

Unification vs. default model resolution. Since Genus uses mod-
els in types, it is possible for models to be inferred via unification
when they are elided. This inference potentially raises confusion
with default model resolution.

Genus distinguishes between two kinds of where-clause con-
straints. Constraints for which the model is required by a param-
eterized type, such as Eq[T] in the declaration void f[T where
Eq[T]](Set[T] x), are called intrinsic constraints, because the
Set must itself hold the corresponding model. By contrast, a
constraint like Printable[T] in the declaration void g[T where
Printable[T]](List[T] x) is extrinsic because List[T] has no
such constraint on T.

Inference in Genus works by first solving for type parameters
and intrinsic constraints via unification, and only then resolving de-
fault models for extrinsic constraints. To keep the semantics simple,
Genus does not use default model availability to guide unification,
and it requires extrinsic where-clause constraints to be written to
the right of intrinsic ones. Nevertheless, it is always possible for
programmers to explicitly specify intent.

4.8 Constraints/Models vs. Interfaces/Objects
The relationship between models and constraints is similar to that
between objects and interfaces. Indeed, the Concept pattern can be
viewed as using objects to implement models, and JavaGI extends
interfaces to encode constraints. In contrast, Genus draws a distinc-
tion between the two, treating models as second-class values that
cannot be stored in ordinary variables. This design choice has the
following basis:
• Constraints are used in practice very differently from “ordinary”

types, as evidenced by the nearly complete separation between
shapes and materials seen in an analysis of a very large software
base [18]. In their parlance, interfaces or classes that encode mul-
tiparameter constraints (e.g., GraphLike) or constraints requiring
binary operations (e.g., Comparable) are shapes, while ordinary
types (e.g., Set) are materials. Muddling the two may give rise to
nontermination (§9).
• Because models are not full-fledged objects, generic code can

easily be specialized to particular using contexts.
• Because model expressions can be used in types, Genus has de-

pendent types; however, making models second-class and im-
mutable simplifies the type system and avoids undecidability.

5. Making Models Object-Oriented
5.1 Dynamic Dispatching and Enrichment
In OO programs, subclasses are introduced to specialize the behav-
ior offered by their superclasses. In Genus, models define part of
the behavior of objects, so models too should support specialization.
Therefore, a model in Genus may include not only method defini-
tions for the base type, but also methods defining more specific be-
havior for subtypes. These methods can be dispatched dynamically
by code both inside and outside model declarations. Dynamic dis-
patch takes place not only on the receiver, but also on method argu-
ments of the manipulated types. The expressive power of dynamic
dispatch is key to OO programming [3], and multiple dispatch is
particularly important for binary operations, which are typically en-
coded as constraints. Our approach differs in this way from G and
Scala, which do not support dynamic dispatch on model operations.

For example, model ShapeIntersect in Figure 8 gives multiple
definitions of intersect, varying in their expected argument types.

constraint Intersectable[T] { T T.intersect(T that); }
model ShapeIntersect for Intersectable[Shape] {
Shape Shape.intersect(Shape s) {...}
// Rectangle and Circle are subclasses of Shape:
Rectangle Rectangle.intersect(Rectangle r) {...}
Shape Circle.intersect(Rectangle r) {...} ...

}
enrich ShapeIntersect {
Shape Triangle.intersect(Circle c) {...} ...

}

Figure 8: An extensible model with multiple dispatch.

In a context where the model is selected, a call to intersect on two
objects statically typed as Shape will resolve at run time to the most
specific method definition in the model. In JavaGI, multiple dispatch
on intersect is impossible, because its dispatch is based on “self”
types [6], while the argument types (including receiver) as well as
the return type of an intersect implementation do not necessarily
have to be the same.

Existing OO type hierarchies are often extended with new sub-
classes in ways not predicted by their designers. Genus provides
model enrichment to allow models to be extended in a modular way,
in sync with how class hierarchies are extended; here we apply the
idea of open classes [11] to models. For example, if Triangle is later
introduced to the Shape hierarchy, the model can then be separately
enriched, as shown in the enrich declaration in Figure 8.

Model multimethods and model enrichment create the same
challenge for modular type checking that is seen with other ex-
tensible OO mechanisms. For instance, if two modules separately
enrich ShapeIntersect, these enrichments may conflict. Like Re-
laxed MultiJava [24], Genus can prevent such errors with a load-
time check that there is a unique best method definition for every
method invocation, obtaining mostly modular type checking and
fully modular compilation. The check can be performed soundly,
assuming load-time access to the entire program. If a program loads
new code dynamically, the check must be performed at the time of
dynamic loading.

5.2 Constraint Entailment
As seen earlier (§3.1), a constraint entails its prerequisite con-
straints. In general, a model may be used as a witness not just
for the constraint it is declared for, but also for any constraints
entailed by the declared constraint. For example, a model for
Comparable[Shape] can be used to witness Eq[Shape].

A second way that one constraint can entail another is through
variance on constraint parameters. For example, since in constraint
Eq the type parameter only occurs in contravariant positions, a model
for Eq[Shape]may also be soundly used as a model for Eq[Circle].
It is also possible, though less common, to use a model to witness
constraints for supertypes, via covariance. Variance is inferred au-
tomatically by the compiler, with bivariance downgraded to con-
travariance.

A model enabled for some constraint in one of the four ways
discussed in §4.4 is also enabled for its prerequisite constraints and
constraints that can be entailed via contravariance. Accommodating
subtyping extends the expressivity of default model resolution, but
poses new challenges for termination. In the technical report [44],
we show that encoding “shape” types (in the sense of Greenman
et al. [18]) as constraints helps ensure termination.

5.3 Model Inheritance
Code reuse among models can be achieved through model inher-
itance, signified by an extends clause (e.g., model CICmp in §4).
Unlike an extends clause in a class or constraint definition, which
creates an is-a relationship between a subclass and its superclass or
a constraint and its prerequisite constraint, an extends clause in a

6

model definition is merely for code reuse. The inheriting model in-
herits all method definitions with compatible signatures available in
the inherited model. The inheriting model can also override these
inherited definitions.

Model inheritance provides a means to derive models that are
otherwise rejected by constraint entailment. For example, the model
ShapeIntersect (Figure 8) soundly witnesses the same constraint
for Rectangle, because the selected method definitions have com-
patible signatures, even though Intersectable is invariant with re-
spect to its type parameter. The specialization to Rectangle can be
performed succinctly using model inheritance, with the benefit of a
more precise result type when two rectangles are intersected:

model RectangleIntersect for Intersectable[Rectangle]
extends ShapeIntersect { }

6. Use-Site Genericity
Java’s wildcard mechanism [40] is in essence a limited form of exis-
tential quantification. Existentials enable genericity at use sites. For
example, a Java method with return type List<? extends Printable>
can be used by generic calling code that is able to print list elements
even when the type of the elements is unknown to the calling code.
The use-site genericity mechanism of Genus generalizes this idea
while escaping some limitations of Java wildcards. Below we sketch
the mechanism.

6.1 Existential Types
Using subtype-bounded existential quantification, the Java type
List<? extends Printable>might be written more type-theoretically
as ∃U≤Printable.List[U]. Genus extends this idea to constraints.
An existential type in Genus is signified by prefixing a quantified
type with type parameters and/or where-clause constraints. For ex-
ample, if Printable is a constraint, the Genus type corresponding
to the Java type above is [some U where Printable[U]]List[U].
The initial brackets introduce a use-site type parameter U and a
model for the given constraint, which are in scope in the quantified
type; the syntax emphasizes the connection between existential and
universal quantification.

The presence of prefixed parameters in existential types gives
the programmer control over the existential binding point, in con-
trast to Java wildcard types where binding is always at the generic
type in which the wildcard is used as a type argument. For exam-
ple, no Java type can express ∃U.List[List[U]], meaning a homo-
geneous collection of lists in which each list is parameterized by
the same unknown type. This type is easily expressed in Genus as
[some U]List[List[U]].

Genus also offers convenient syntactic sugar for common uses
of existential types. A single-parameter constraint can be used as
sugar for an existential type: e.g., Printable, used as a type, is
sugar for [some U where Printable[U]]U, allowing a value of any
printable type. The wildcard syntax List[?] represents an existen-
tial type, with the binding point the same as in the Java equivalent.
The type with a wildcard model Set[String with ?] is sugar for
[some Eq[String] m]Set[String with m].

Subtyping and coercion. Genus draws a distinction between sub-
typing and coercion involving existential types. Coercion may
induce extra computation (i.e., existential packing) and can be
context-dependent (i.e., default model resolution), while subtyp-
ing cannot. For example, the return expression in Figure 9 type-
checks not because ArrayList[String] is a subtype of the existen-
tial return type, but because of coercion, which works by pack-
ing together a value of type ArrayList[String] with a model
for Comparable[String] (in this case, the natural model) into a
single value. The semantics of subtyping involving where-clause-

[some T where Comparable[T]]List[T] f () {
return new ArrayList[String]();

}

1 sort(f());
2 [U] (List[U] l) where Comparable[U] = f(); // bind U
3 l.first().compareTo(l.last()); // U is comparable
4 U[] a = new U[64]; // use run-time info about U
5 l = new List[U](); // new list, same U

Figure 9: Working with existential quantification.

quantified existential types is designed in a way that makes it easy
for programmers to reason about subtyping and joining types.

Capture conversion. In Java, wildcards in the type of an expres-
sion are instantiated as fresh identifiers when the expression is type-
checked, a process called capture conversion [17]. Genus extends
this idea to constraints: in addition to fresh type variables, capture
conversion generates fresh models for where-clause constraints, and
enables them in the current scope.

For example, at line 1 in Figure 9, when the call to sort (defined
in §3.3) is type-checked, the type of the call f() is capture-converted
to List[#T], where #T is the fresh type variable that capture con-
version generates for T, and a model for Comparable[#T] becomes
enabled in the current context. Subsequently, the type argument to
sort is inferred as #T, and the default model for Comparable[#T]
resolves to the freshly generated model.

6.2 Explicit Local Binding
Capture conversion is convenient but not expressive enough. Con-
sider a Java object typed as List<? extends Comparable>. The pro-
grammer might intend the elements of this homogeneous list to be
comparable to one another, but comparisons to anything other than
null do not type-check.

The awkwardness is addressed in Genus by explicit local bind-
ing of existentially quantified type variables and where-clause con-
straints, giving them names that can be used directly in the local
context. An example of this mechanism is found at line 2 in Fig-
ure 9. The type variable U can be used as a full-fledged type in the
remainder of the scope.

As its syntax suggests, explicit local binding can be viewed as
introducing an inlined generic method encompassing subsequent
code. Indeed, it operates under the same rules as universally quan-
tified code. For example, the where clause at line 2 enables a new
model so that values of type U can be compared at line 3. Also, lo-
cally bound type variables are likewise reifiable (line 4). Moreover,
the binding at line 2 is type-checked using the usual inference algo-
rithm to solve for U and for the model for Comparable[U]: per §4.7,
the former is inferred via unification and the latter via default model
resolution—it is an extrinsic constraint. Soundness is maintained by
ensuring that l is initialized upon declaration and that assignments
to the variable preserve the meaning of U.

7. Implementation
We have built a partial implementation of the Genus language in
Java. The implementation consists of about 23,000 lines of code,
extending version 2.6.1 of the Polyglot compiler framework [28].
We have an essentially complete implementation of all type check-
ing and inference features. Code generation works by translating to
Java 5 code, relying on a Java compiler as a back end. Code gener-
ation is less complete than type checking but also less interesting;
however, the compiler can compile the benchmarks of §8, which use
generics in nontrivial ways. The current compiler implementation
type-checks but does not generate code for multimethod dispatch or
for existentials; it does not yet specialize instantiations to particular
type arguments.

7

/* Source code in Genus */
class ArrayList[T] implements List[T] {
T[] arr;
ArrayList() { arr = new T[INITIAL_SIZE]; } ... }

/* Target code in Java */
class ArrayList<T,A$T> implements List<T,A$T> {
A$T arr;
ObjectModel<T,A$T> T$model; // run-time info about T
ArrayList(ObjectModel<T,A$T> T$model) {
this.T$model = T$model;
arr = T$model.newArray(INITIAL_SIZE);

} ... }

Figure 10: Translating the Genus class ArrayList into Java.

7.1 Implementing Constraints and Models
Constraints and models in Genus code are translated to param-
eterized interfaces and classes in Java. For example, the con-
straint Comparable[T] is translated to a parameterized Java inter-
face Comparable<T,A$T> providing a method compareTo with the
appropriate signature: int compareTo(T,T). The extra type param-
eter A$T is explained in §7.3. Models are translated to Java classes
that implement these constraint interfaces.

7.2 Implementing Generics
Parameterized Genus classes are translated to correspondingly pa-
rameterized Java classes. However, type arguments and models must
be represented at run time. So extra arguments carrying this infor-
mation are required by class constructors, and constructor bodies
are extended to store these arguments as fields. For example, class
ArrayList has a translated constructor with the signature shown in
Figure 10. Parameterized methods and models are translated in a
similar way by adding extra arguments representing type and model
information.

7.3 Supporting Primitive Type Arguments
A challenge for efficient generics, especially with a JVM-based im-
plementation, is how to avoid uniformly wrapping all primitives in-
side objects when primitive types are used as type arguments. Some
wrapping is unavoidable, but from the standpoint of efficiency, the
key is that when code parameterized on a type T is instantiated on a
primitive type (e.g., int), the array type T[] should be represented
exactly as an array of the primitive type (e.g., int[]), rather than a
type like Integer[] in which every array element incurs the over-
head of individualized memory management.

Our current implementation uses a homogeneous translation to
support this efficiency; the model object (e.g., T$model in Figure 10)
for a type parameter T provides all operations about T[]. The model
object has the interface type ObjectModel<T,A$T>, which specifies,
via A$T, the operations for creating and accessing arrays of (un-
boxed) T. For example, the type of the model object used to create an
ArrayList[double] implements ObjectModel<Double,double[]>.
All interfaces representing single-parameter constraints implicitly
extend ObjectModel<T,A$T>, so an ObjectModel argument is usu-
ally needed only on generics that do not otherwise constrain their
type parameters.

A more efficient approach to supporting primitive type argu-
ments is to generate specialized code for primitive instantiations,
as is done in C#. The design of Genus makes it straightforward to
implement particular instantiations with specialized code.

8. Evaluation
8.1 Porting Java Collections Framework to Genus
To evaluate how well the language design works in practice, we
ported all 10 general-purpose implementations in the Java collec-

tions framework (JCF) as well as relevant interfaces and abstract
implementations, to Genus. The result is a safer, more precise en-
coding and more code reuse with little extra programmer effort.

The single most interesting constrained generic in JCF is proba-
bly TreeSet (and TreeMap, which backs it). In its Java implementa-
tion, elements are ordered using either the element type’s implemen-
tation of Comparable or a comparator object passed as a constructor
argument, depending on which constructor is used to create the set.
This ad hoc choice results in error-prone client code. In Genus, by
contrast, the ordering is part of the TreeSet type, eliminating 35 oc-
currences of ClassCastException in TreeSet’s and TreeMap’s specs.

Genus collection classes are also more faithful to the semantics
of the abstractions. Unlike a Set[E], a List[E] should not necessar-
ily be able to test the equality of its elements. In Genus, collection
methods like contains and remove are instead parameterized by the
definition of equality (§3.2). These methods cannot be called unless
a model for Eq[E] is provided.

More powerful genericity also enables increased code reuse. For
example, the NavigableMap interface allows extracting a descending
view of the original map. In JCF, TreeMap implements this view by
defining separate classes for each of the ascending and descending
views. In contrast, Genus expresses both views concisely in a single
class parameterized by a model that defines how to navigate the
tree, eliminating 160 lines of code. This change is made possible
by retroactive, non-unique modeling of compareTo().

Thanks to default models—in particular, implicit natural models,
for popular operations including toString, equals, hashCode and
compareTo—client and library code ordinarily type-check without
using with clauses. When with clauses are used, extra expressive
power is obtained. In fact, the descending views are the only place
where with clauses are needed in the Genus collection classes.

8.2 Porting the Findbugs Graph Library to Genus
We ported to Genus the highly generic Findbugs [15] graph library
(∼1000 non-comment LoC), which provides graph algorithms used
for the intermediate representation of static analyses. In Findbugs,
the entities associated with the graph (e.g., Graph, Vertex, Edge) are
represented as Java interfaces; F-bounded polymorphism is used to
constrain parameters. As we saw earlier (§2), the resulting code is
typically more cumbersome than the Genus version.

We quantified this effect by counting the number of parameter
types, concrete types and keywords (extends, where) in each type
declaration, ignoring modifiers and the name of the type. Across
the library, Genus reduces annotation burden by 32% yet increases
expressive power. The key is that constraints can be expressed di-
rectly without encoding them into subtyping and parametric poly-
morphism; further, prerequisite constraints avoid redundancy.

8.3 Performance
The current Genus implementation targets Java 5. To explore the
overhead of this translation compared to similar Java code, we im-
plemented a small Genus benchmark whose performance depends
heavily on the efficiency of the underlying genericity mechanism,
and hence probably exaggerates the performance impact of generics.
The benchmark performs insertion sort over a large array or other
ordered collection; the actual algorithm is the same in all cases, but
different versions have different degrees of genericity with respect
to the element type and even to the collection being sorted. Element
type T is required to satisfy a constraint Comparable[T] and type A is
required to satisfy a constraint ArrayLike[A,T], which requires A to
act like an array of T’s. Both primitive values (double) and ordinary
object types (Double) are sorted.

The results from sorting collections of 100k elements are sum-
marized in Table 1. Results were collected using Java 7 on a Mac-
Book Pro with a 2.6GHz Intel Core i7 processor. All measurements

8

Table 1: Comparing performance of Java and Genus
data structure Java (s) Genus (s)

[spec.]

Non-generic sort

double[] 1.3
Double[] 3.8
ArrayList[double] — 5.4 [4.0]
ArrayList[Double] 9.6 14.5 [8.3]

Generic sort:
Comparable[T]

double[] — 19.3 [1.3]
Double[] 7.7 10.0 [3.8]
ArrayList[double] — 6.7 [4.0]
ArrayList[Double] 9.8 17.9 [8.3]

Generic sort:
ArrayLike[A,T],
Comparable[T]

double[] — 17.0 [1.3]
Double[] 12.8 12.4 [3.8]
ArrayList[double] — 24.6 [4.0]
ArrayList[Double] 12.8 24.8 [8.3]

are the average of 10 runs, with an estimated relative error always
within 2%. For comparison, the same (non-generic) algorithm takes
1.1s in C (with gcc -O3). The Java column leaves some entries blank
because Java does not allow primitive type arguments.

To understand the performance improvement that is possible by
specializing individual instantiations of generic code, we used hand
translation; as mentioned above, the design of Genus makes such
specialization easy to do. The expected performance improvement
is shown in the bracketed table entries. Specialization to primitive
types is particularly useful for avoiding the high cost of boxing
and unboxing primitive values, but the measurements suggest use
of primitive type arguments can improve performance even without
specialization (e.g., Genus ArrayList[double] is usually faster than
Java ArrayList<Double>).

9. Formalization and Decidability
We have formalized the key aspects of the Genus type system, in the
style of Featherweight Java [20]. Importantly, inference rules for
subtyping, constraint entailment, and well-formedness (including
model–constraint conformance in the presence of multimethods)
are given. For lack of space, the formalization is provided in the
technical report [44]. We are not aware of any unsoundness in the
type system, but leave proving soundness to future work.

Default model resolution is an integral part of the formalization,
matching the description in §4.4, §4.7 and §5.2. It is formalized as
a translation from one calculus into another—the source calculus
allows default models while the target is default-model-free.

Syntactic restrictions for decidable resolution of type class in-
stances [38] and decidable subtyping with variance [18] have been
separately proposed. We formulate our termination condition for de-
fault model resolution by synthesizing these restrictions, and to the
best of our knowledge, give the first termination proof for such res-
olution when coupled with variance.

10. Related Work
Much prior work on parametric genericity mechanisms (e.g., [1,
5, 8, 10, 21, 23, 26, 34]) relies on constraint mechanisms that do
not support retroactive modeling. We focus here on more recent
work that follows Haskell’s type classes in supporting retroactive
modeling, complementing the discussion in previous sections.

The C++ community developed the Concept design pattern,
based on templates, as a way to achieve retroactive modeling [4].
This pattern is used extensively in the STL and Boost libraries.
Templates are not checked until instantiation, so developers see con-
fusing error messages, and the lack of separate compilation makes
compilation time depend on the amount of generic library code.
The OO language G [37], based on System FG [36], supports sep-
arate compilation but limits the power of concept-based overload-
ing. By contrast, C++ Concepts [19] abandon separate compilation

to fully support concept-based overloading. It was not adopted by
the C++11 standard [35], however. Concept-based overloading is
orthogonal to the other Genus features; it is not currently imple-
mented but could be fully supported by Genus along with separate
compilation, because models are chosen modularly at compile time.

In Scala, genericity is achieved with the Concept design pat-
tern and implicits [30]. This approach is expressive enough to en-
code advanced features including associated types [9] and gener-
alized constraints [14]. Implicits make using generics less heavy-
weight, but add complexity. Importantly, Scala does not address
the problems with the Concept pattern (§2). In particular, it lacks
model-dependent types and also precludes the dynamic dispatch that
contributes significantly to the success of object-oriented program-
ming [3].

JavaGI [43] generalizes Java interfaces by reusing them as type
classes. Like a type class instance, a JavaGI implementation is glob-
ally scoped, must uniquely witness its interface, and may only con-
tain methods for the type(s) it is declared with. Unlike in Haskell,
a call to an interface method is dynamically dispatched across all
implementations. Although dispatch is not based entirely on the re-
ceiver type, within an implementation all occurrences of an imple-
menting type for T must coincide, preventing multiply dispatching
intersect across the Shape class hierarchy (cf. §5.1).

Approaches to generic programming in recent languages includ-
ing Rust [33] and Swift [39] are also influenced by Haskell type
classes, but do not escape their limitations.

Type classes call for a mechanism for implicitly and recursively
resolving evidence of constraint satisfaction. The implicit calcu-
lus [31] formalizes this idea and extends it to work for all types.
However, the calculus does not have subtyping. Factoring subtyp-
ing into resolution is not trivial, as evidenced by the reported stack
overflow of the JavaGI compiler [18].

No prior work brings type constraints to use sites. The use
of type constraints as types [39, 43] is realized as existentials in
Genus. “Material–Shape Separation” [18] prohibits types such as
List<Comparable>, which do find some usage in practice. Existen-
tials in Genus help express such types in a type-safe way.

Associated types [9, 27] are type definitions required by type
constraints. Encoding functionally dependent type parameters as
associated types helps make certain type class headers less ver-
bose [16]. Genus does not support associated types because they
do not arise naturally as in other languages with traits [30, 33] or
module systems [13] and because Genus code does not tend to need
as many type parameters as in generic C++ code.

11. Conclusion
The Genus design is a novel and harmonious combination of lan-
guage ideas that achieves a high degree of expressive power for
generic programming while handling common usage patterns sim-
ply. Our experiments with using Genus to reimplement real software
suggests that it offers an effective way to integrate generics into
object-oriented languages, decreasing annotation burden while in-
creasing type safety. Our benchmarks suggest the mechanism can be
implemented with good performance. Future work includes proving
type safety of Genus and exploring more efficient implementations.

Acknowledgments
We thank Owen Arden and Chinawat Isradisaikul for their help
with implementation problems, Ross Tate, Doug Lea, and Sophia
Drossopolou for their suggestions about the design, and Tom Ma-
grino for suggesting the name Genus.

This work was supported by grant N00014-13-1-0089 from the
Office of Naval Research, by MURI grant FA9550-12-1-0400, by a
grant from the National Science Foundation (CCF-0964409), by the

9

German Federal Ministry of Education and Research (BMBF), grant
01IC12S01V, by the European Research Council, grant 321217, and
by Quanta. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing
the official policies or endorsement, either expressed or implied, of
any sponsor.

References
[1] O. Agesen, S. N. Freund, and J. C. Mitchell. Adding type parame-

terization to the Java language. In Proc. 12th OOPSLA, pages 49–65,
1997.

[2] A. V. Aho, J. E. Hopcroft, and J. Ullman. Data Structures and Algo-
rithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1st edition, 1983.

[3] J. Aldrich. The power of interoperability: Why objects are inevitable. In
Proc. ACM Int’l Symp. on New Ideas, New Paradigms, and Reflections
on Programming & Software (Onward!), pages 101–116, 2013.

[4] M. H. Austern. Generic Programming and the STL: Using and Extend-
ing the C++ Standard Template Library. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1998.

[5] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the
future safe for the past: Adding genericity to the Java programming
language. In Proc. 13th OOPSLA, Oct. 1998.

[6] K. B. Bruce, M. Odersky, and P. Wadler. A statically safe alternative
to virtual types. In Proc. 12th European Conf. on Object-Oriented
Programming, number 1445 in Lecture Notes in Computer Science,
pages 523–549, July 1998.

[7] P. Canning, W. Cook, W. Hill, J. Mitchell, and W. Olthoff. F-bounded
polymorphism for object-oriented programming. In Proc. Conf.
on Functional Programming Languages and Computer Architecture,
pages 273–280, 1989.

[8] R. Cartwright and G. L. Steele Jr. Compatible genericity with run-time
types for the Java programming language. In Proc. 13th OOPSLA,
pages 201–215, Oct. 1998.

[9] M. M. T. Chakravarty, G. Keller, S. Peyton-Jones, and S. Marlow.
Associated types with class. In Proc. 32nd POPL, pages 1–13, 2005.

[10] C. Chambers. Object-oriented multi-methods in Cecil. In O. L. Mad-
sen, editor, Proc. 20th European Conf. on Object-Oriented Program-
ming, volume 615, pages 33–56, 1992.

[11] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava:
Modular open classes and symmetric multiple dispatch for Java. In
Proc. 15th OOPSLA, pages 130–145, 2000.

[12] M. Day, R. Gruber, B. Liskov, and A. C. Myers. Subtypes vs.
where clauses: Constraining parametric polymorphism. In Proc. 10th
OOPSLA, pages 156–168, Oct. 1995. ACM SIGPLAN Notices 30(10).

[13] D. Dreyer, R. Harper, M. M. T. Chakravarty, and G. Keller. Modular
type classes. In Proc. 34th POPL, pages 63–70, 2007.

[14] B. Emir, A. Kennedy, C. Russo, and D. Yu. Variance and generalized
constraints for C# generics. In Proc. 20th European Conf. on Object-
Oriented Programming, pages 279–303, 2006.

[15] findbugs-release. Findbugs. http://findbugs.sourceforge.net/.
[16] R. Garcia, J. Jarvi, A. Lumsdaine, J. G. Siek, and J. Willcock. A

comparative study of language support for generic programming. In
Proc. 18th OOPSLA, pages 115–134, 2003.

[17] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification. Addison Wesley, 3rd edition, 2005. ISBN 0321246780.

[18] B. Greenman, F. Muehlboeck, and R. Tate. Getting F-bounded poly-
morphism into shape. In PLDI, pages 89–99, 2014.

[19] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lums-
daine. Concepts: Linguistic support for generic programming in C++.
In Proc. 21st OOPSLA, pages 291–310, 2006.

[20] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, 2001.

[21] A. Kennedy and D. Syme. Design and implementation of generics for
the .NET Common Language Runtime. In PLDI, pages 1–12, 2001.

[22] B. Liskov, A. Snyder, R. Atkinson, and J. C. Schaffert. Abstraction
mechanisms in CLU. Comm. of the ACM, 20(8):564–576, Aug. 1977.
Also in S. Zdonik and D. Maier, eds., Readings in Object-Oriented
Database Systems.

[23] B. Liskov, R. Atkinson, T. Bloom, J. E. Moss, J. C. Schaffert, R. Schei-
fler, and A. Snyder. CLU Reference Manual. Springer-Verlag, 1984.
Also published as Lecture Notes in Computer Science 114, G. Goos
and J. Hartmanis, Eds., Springer-Verlag, 1981.

[24] T. Millstein, M. Reay, and C. Chambers. Relaxed MultiJava: Balancing
extensibility and modular typechecking. In Proc. 18th OOPSLA, pages
224–240, 2003.

[25] D. R. Musser, G. J. Derge, and A. Saini. The STL Tutorial and
Reference Guide. Addison-Wesley, 2nd edition, 2001. ISBN 0-201-
37923-6.

[26] A. C. Myers, J. A. Bank, and B. Liskov. Parameterized types for Java.
In Proc. 24th POPL, pages 132–145, Jan. 1997.

[27] N. C. Myers. Traits: a new and useful template technique. C++ Report,
7(5), June 1995.

[28] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: an extensible
compiler framework for Java. In Proc. 12th Int’l Conf. on Compiler
Construction (CC’03), volume 2622 of Lecture Notes in Computer
Science, pages 138–152, 2003.

[29] M. Odersky. The Scala Language Specification. EPFL, 2014. Version
2.9.

[30] B. C. Oliveira, A. Moors, and M. Odersky. Type classes as objects and
implicits. In Proc. 25th OOPSLA, pages 341–360, 2010.

[31] B. C. Oliveira, T. Schrijvers, W. Choi, W. Lee, and K. Yi. The implicit
calculus: A new foundation for generic programming. In PLDI, pages
35–44, 2012.

[32] S. Peyton-Jones, M. Jones, and E. Meijer. Type classes: an exploration
of the design space. In Haskell Workshop, 1997.

[33] Rust. Rust programming language. http://doc.rust-lang.org/1.0.0-beta,
2015.

[34] C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpolt. An
introduction to Trellis/Owl. In Proc. 1st OOPSLA, Sept. 1986.

[35] J. G. Siek. The C++0x concepts effort. Arxiv preprint arXiv:1201.0027,
Dec. 2011.

[36] J. G. Siek and A. Lumsdaine. Essential language support for generic
programming. In PLDI, pages 73–84, 2005.

[37] J. G. Siek and A. Lumsdaine. A language for generic programming in
the large. Science of Computer Programming, 76(5):423–465, 2011.

[38] M. Sulzmann, G. J. Duck, S. Peyton-Jones, and P. J. Stuckey. Un-
derstanding functional dependencies via constraint handling rules. J.
Funct. Program., 17(1):83–129, Jan. 2007.

[39] Swift. Swift programming language.
https://developer.apple.com/swift/resources/, 2014.

[40] M. Torgersen, C. P. Hansen, E. Ernst, P. von der Ahé, G. Bracha, and
N. Gafter. Adding wildcards to the Java programming language. In
Proc. 2004 ACM Symposium on Applied Computing, SAC ’04, pages
1289–1296, 2004.

[41] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc.
In Proc. 16th POPL, pages 60–76, 1989.

[42] A. Warth, M. Stanojević, and T. Millstein. Statically scoped object
adaptation with expanders. In Proc. 21st OOPSLA, Oct. 2006.

[43] S. Wehr and P. Thiemann. JavaGI: The interaction of type classes with
interfaces and inheritance. ACM Trans. Prog. Lang. Syst., 33(4):12:1–
12:83, July 2011.

[44] Y. Zhang, M. C. Loring, G. Salvaneschi, B. Liskov, and A. C. Myers.
Genus: Making generics object-oriented, expressive, and lightweight.
Technical Report http://hdl.handle.net/1813/39910, Cornell University,
Apr. 2015.

10

http://findbugs.sourceforge.net/

	Introduction
	The Need for Better Genericity
	Type Constraints in Genus
	Type Constraints as Predicates
	Prescribing Constraints Using Where Clauses
	Witnessing Constraints Using Models

	Models
	Models as Expanders
	Parameterized Models
	Non-Uniquely Witnessing Constraints
	Resolving Default Models
	Models in Types
	Models at Run Time
	Default Model Resolution: Algorithmic Issues
	Constraints/Models vs. Interfaces/Objects

	Making Models Object-Oriented
	Dynamic Dispatching and Enrichment
	Constraint Entailment
	Model Inheritance

	Use-Site Genericity
	Existential Types
	Explicit Local Binding

	Implementation
	Implementing Constraints and Models
	Implementing Generics
	Supporting Primitive Type Arguments

	Evaluation
	Porting Java Collections Framework to Genus
	Porting the Findbugs Graph Library to Genus
	Performance

	Formalization and Decidability
	Related Work
	Conclusion

