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B1.c Extended Synopsis

1. Problem Statement

Cloud computing is changing our perception of computing: The Internet is becoming both the
computer and the software: (a) vast data centers and computing power are available via the
Internet (”infrastructure as a service”), (b) software is available via the Internet as a service, often
in a multi-tenant mode (”software as a service”). The promise of unlimited processing/storage
power has fostered data intensive and reactive applications processing big amounts of data from
heterogenous sources scattered over the cloud and reacting to events happening across the cloud.
Software services must be both standard components to pay o↵ for their provider and highly
configurable and customizable to serve the competitive needs of multiple tenants. Developing such
applications is challenging using current programming technology.

First, existing abstractions are laid out to mostly process individual values. This model forces
programmers of reactive and data intensive computations to explicitly track the data and keep
tabs on events across a cloud and programmatically correlate them. This introduces accidental
complexity and channels programmers attention and e↵ort away from the relevant program logic
building on top of big data processing. Making the complexity of data intensive and reactive
software manageable requires abstractions to express high-level correlations between data/events,
freeing the programmer from the task of explicitly tracking them. Ideally, means of abstraction,
e.g., object-oriented subtype polymorphism, should be applicable to these abstractions, too.

Second, existing programming abstractions fail to reconcile software reuse and extensibility at the
level of large-scale software services. Object-oriented programming (OOP) reconciles extensibility
and reuse of individual classes via inheritance, overriding, and subtype polymorphism. However,
these features do not scale up to units of deployment and aggregation in a large-scale assembly
process such as packages or namespaces. These deficiencies make it di�cult to provide service
variations to accommodate specific needs of (groups of) tenants and to enable several tenants to
share a service implementation with di↵erent configurations [4]. To work around these deficiencies,
dependency injection frameworks [37, 43, 18, 23] have emerged that provide substantial infrastruc-
ture for naming and packing classes, for describing modules and making them identifiable, for using
class loading to resolve module dependencies, for call-backs to intercept the inter-module commu-
nication by the framework, etc., significantly contributing to software complexity.

2. Objectives

The goal of PACE is to design, implement, and validate a programming model that cohesively
integrates abstractions for reactive and data intensive computations with large-scale modularity
concepts to radically improve the development and quality of applications in cloud environments.

Unified Abstractions for Reactive and Data Intensive Computations. PACE will unify
and further develop separated threads of existing work on: (a) reactive behavior (RB), (b) language
integrated queries (LIQ), and (c) distributed data-parallel computing (DDPC). The RB thread
includes work on functional reactive programming [6, 30, 27], aspect-oriented programming [24, 8,
1, 38], language integrated event processing [13, 22, 17], and coordination of concurrent processes [3,
1, 32, 20, 19, 13]. Each class of approaches addresses a di↵erent aspect of reactive behavior, and none
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of them handles reactive behavior over mutable object graphs. The most notable LIQ approach is
.Net’s LINQ framework [28]21 supporting uniform access over in-memory data collections, relational
databases, and XML stores. The need for high-level abstractions for DDPC has lead to various
frameworks and domain-specific languages [5, 36, 39, 21]. LIQ and DDPC threads focus on di↵erent
aspects of data processing (bridging between data models and facilitating e�cient processing of
data); none makes data correlation a first-class concept that is e.g., subject to inheritance, and
subtype polymorphism.

Our objective is to address the specific problems in each thread not individually, but by a unifying
approach based on identifying the essential underlying abstractions. Apart from the general ar-
gument that uniformity enables better abstractions and reduces the number of concepts to reason
about, there are specific theoretical, conceptual, and technical arguments for a unified approach.
From a theoretical perspective, category theory suggests dualities between all three areas. Meijer
and Biermann [29] have observed that relational data (SQL-like) and object graphs (noSQL-like)
are duals in the category theory sense. Duality seems to relate RB and LIQ concepts, too [7]. From
a conceptual perspective, approaches to RB, DDPC, and LIQ are similar in that all three try to
replace a programming model organized around individual passive values by one organized around
changing data sets (events involved in reactive behavior, in-memory collections, or data scattered
over the Internet). From a technical perspective, unification paves the road to a common core
set of e�cient implementation techniques. Viewed from a unifying perspective, implementation
techniques used in current approaches to RB, LIQ, and PDDB reveal several commonalities. Both
incremental view maintenance and reactive behavior are based on building data-flow graphs to
incrementally propagate changes. Just as LINQ uses reified query tree expressions for query opti-
mizations, FlumeJava [5] also builds a dependency graph of operations involved in a data processing
pipeline for deriving optimized evaluation plans.

The key novel contribution of PACE is a unified object-oriented language model that has data/event
correlations as a primitive element and defines means of composition and abstraction for them. By
being a first-class element of the language, data/event correlations become extensible by inheritance,
late binding and subtype polymorphism. Furthermore, the model provides a set of abstractions
on which correlations operate that enable polymorphism with respect to what is processed and
how the processing is done; yet, di↵erent instantiations of these abstractions will account for the
specific semantics of event or data processing. Armed with such a language model, programmers
could turn their attention away from micromanaging data/events to taking advantage of what the
cloud o↵ers. The resulting applications become easier to understand/evolve and more amenable
to automated reasoning and sophisticated optimization techniques. A unified language model for
reactive and data intensive computations as sketched here is visionary and has the potential to
trigger substantial new research.

Large-Scale Modularity. PACE will deliver language concepts for large-scale modularity, reuse,
and extensibility to enable polymorphic software services, thereby building on and extending work
of the PI on CaesarJ [31, 2]22.

CaesarJ uniformly encodes small-scale and large-scale modules by classes with nested classes. Simi-

21There are also some preliminary e↵orts to support language integrated queries in Java [44] and Scala [42, 14].
22CaesarJ belongs to a class of approaches to advanced modularity in OO languages that uniformity encode small-

scale and large-scale modules in classes [10, 31, 2, 33, 4]. Details of other approaches are presented in the proposal.
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larly, module interfaces are encoded in interfaces with nested interfaces. Instances of module classes
encapsulate the implementation of a whole class graph (class family), enabling family polymorphism
[10, 11]; a special form of dependent types [12] is used for type-safe family polymorphism. Large-
scale module extensibility is enabled by virtual classes23 [26], and propagating mixin composition
[40, 9, 41]. Intermodule dependencies are expressed via collaboration interfaces that in addition to
what is provided by a module also declare what the module expects from other modules. Module
implementations realize the provided part; module bindings realize the expected part24. Consider
e.g., a graphical editor module involving abstractions for nodes and connectors; its provided in-
terface covers the ”view”25 aspects of these abstractions; the expected part covers the ”model”
aspects. Several implementations of the editor are conceivable, e.g., with support for accelerator
keys, with multi-language support, etc.; likewise, there can be several bindings to display di↵erent
data types, e.g., nodes in a WLAN, participants in a social network, etc. Implementations and
binding of the same interface are automatically composable via propagating mixin composition;
one can reuse a service implementation with any binding of that service’s interface and vice versa.

These features make CaesarJ’s concepts a great starting point towards language support for ”software-
as-a-service”. PACE will advance the current state of the art in three important ways.

First, virtual classes will be generalized. The latter can modularly express only one dimension of
class variability, represented by the type hierarchy of the enclosing object. There are, however,
scenarios where a class’ definition may vary along several dimensions, e.g., the definition of nodes
of a graphical editor depends on both the editor type and the data types displayed by the node. A
generalization of virtual classes are dependent classes [16]: Variation axes of a class are expressed
by parameters rather than by nesting. Preliminary investigations [15] indicate that this idea has
great potential for enabling highly polymorphic definitions of functionality, particularly of the kind
needed in the area of reactive and data intensive applications. In PACE, this idea will be realized
in a comprehensive research e↵ort answering several open questions: How would the design of a
calculus that formalizes the idea look like? Does it make sense to have both dependent and virtual
classes? Can a generalization of dependent classes subsume generics? How can more dynamic
variations be supported while retaining type safety? And, many more.26

Second, PACE will deliver a concept for intermodule dependency management and composition that
avoids static dependency resolution. Like ML functors [25] and Newspeak modules [4], Caesar’s
family classes abstract over their dependencies via parameterization by the collaboration interface.
Unlike in Newspeak, composition does not happen via parameter passing, but by propagating mixin
composition, thus, it is static like in ML. However, dynamic service composition is an important
feature in cloud environments. The challenge will be to reconcile the power of a parameter-passing
style mechanism for module dependency resolution with static typing.

The Overall Vision. The overall objective is a a seamless integration of large-scale modularity
concepts with abstractions for reactive and data intensive computations yielding great synergies for
both sides. This integration will make reactive and data intensive software subject to large-scale
reusability and incremental extensibility, e.g., it will allow programmers to encode the behavior

23Like methods, nested classes can be overridden in subclasses, hence they are called virtual classes.
24An implementation of the expected part is mostly used to map service abstractions to domain abstractions in a

particular usage context of the service, hence the name.
25In the sense of the Model-View-Controler (MVC) pattern.
26More details about the research questions related to dependent classes to be addressed are given in the proposal.
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of large-scale components as state machines and enable extensibility at this level of abstraction.
In turn, the integration will decouple service bindings from the specifics of the binding context.
CaesarJ uses aspect-oriented pointcut-advice mechanisms to embed bindings in the control and
data flow of a service’s usage context, which may introduce coupling [38]; this would be reduced
by proper abstractions for reactive behavior.

3. Work Plan

Scala [35] will be used as our workbench, since it o↵ers features relevant for PACE, e.g., higher-
oder functions and advanced typing, and support for embedding new concepts without changing
the compiler. Moreover, it is unique in having vibrant research and industrial communities. A
collaboration with Prof. Dr. Martin Odersky and the Scala team at EPFL is planned. We have
informally agreed on the goals of this proposal to avoid duplication of research e↵orts and to
coordinate our e↵orts with the work on the Doppler project27. The planned cooperation o↵ers the
opportunity to integrate the results of PACE into the development version of Scala. Our goal is
not to ”stu↵” Scala with concepts, but to introduce concepts that generalize over existing ones,
thus any new concept should ideally make some existing one obsolete.

The research will be organized in the following units summarized in Figure 1.

Unit 1: Foundations of Reactive & Data Intensive 
Computations

Year 1 Year 2 Year 3 Year 4 Year 5

Unit 2: Abstractions for Reactive & Data Intensive 
Computations

Unit 3: Efficient Implementation of Reactive & Data 
Intensive Computations

Unit 4: Advanced Class Dispatch

Unit 5: Large-Scala Module System

Unit 6: Efficient Implementation of Modularity Concepts

Unit 7: Integration & Validation

• Unit 1 and 4 provide foundations for other units. Hence, 
they start earlier. 

• Unit 2, 5 and units 3,6 run in parallel. The corresponding 
deliverables are available in preliminary form by the end 
of year 3, respectively 4. 

• Year 4, respectively 5 is dedicated to cross-unit 
integration of the results and year 5 to validation and 
refinement based on insights gained by validation.

• The validation setup is continuously developed and 
refined in unit 7. 

• A Ph.D. student is assigned to each of the units 1-6. 
• Unit 7 cuts across other units and is teamwork.
• Units 1-3 and units 4-6 are coordinated by one postdoc 

each. 

Figure 1: Work Units

Unit 1: Foundations of Abstractions for Reactive and Data Intensive Computations. This unit will
develop a common theoretical foundation for language integrated queries, abstractions for data-
parallel pipelines, and reactive programming. It will explore the suitability of structures from
category theory as a foundation for the abstractions for reactive and data intensive computations.
The key challenge will be the application of these structures to an OO setting, featuring subtype
polymorphism; so far they have been used in a functional setting, featuring parametric polymor-
phism.

Unit 2: Abstractions for Reactive and Data Intensive Computations. The first key challenge is
support for declaring arbitrary computations as reactive, which causes their results to be refreshed
whenever data changes that participated in computing them. A second challenge concerns the
design of a unified query language that enables abstraction over details of the data being processed

27ERC Advanced Grant awarded to Martin Odersky
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and over technical aspects of computations. The third key challenge concerns the design of a library
of polymorphic data types that have multiple definitions, each with a specialized implementation
of the procedural interface encoding specific processing strategies.

Unit 3: E�cient Implementation of Abstractions for Reactive and Data Intensive Computations.
This unit will develop (a) a common set of query optimization techniques that apply across event
and data queries, and (b) a common push-based dependency tracking infrastructure for reactive
data, event/handler dependencies, and propagation of changes incrementally to cached query re-
sults. This unit involves interesting interactions of techniques from databases and programming
languages.

Unit 4: Advanced Class Dispatch. Advanced class dispatch will be formally defined, departing from
previous formalizations of virtual classes [16] and the core of Scala [34]. Based on insights gained in
previous work, other ways to represent types will be explored, e.g., as sets of constraints. Encoding
generics as dependent classes and advancing dispatch and class composition semantics are further
topics that will be investigated.

Unit 5: Large-Scale Module System. This unit is concerned with designing a parametric module
system inspired by that of Newspeak. The key challenges are (a) to come up with a unified
design bringing together parameterized modules and parameterized classes (dependent classes) in
a meaningful way, and (b) to ensure static type safeness in the presence of increased flexibility.

Unit 6: E�cient Implementation of Modularity Concepts. This unit will integrate results of unit
5 unit 6 into a practically usable language by studying and developing e�cient implementation
techniques for the proposed modularity concepts. An appropriate mapping of the new concepts to
Scala concepts, such as virtual types and traits, will be designed. Virtual machine techniques will
also be considered.

Unit 7: Integration and Validation. This unit designs and conducts empirical studies to answer
questions such as: (1) Do dedicated language abstractions reduce the complexity and improve
overall design quality of applications in cloud environments compared to mainstream programming
models? (2) Does the unified language design generalize over existing abstractions, yield better
designs, and is less complex? (3) Do dedicated abstractions positively/negatively a↵ect the e�-
ciency of applications in a cloud environment? Some of the case studies will be derived from real
cases in the context of Business ByDesign, the service platform of SAP. I am advising a Ph.D.
student funded by SAP, who is working on improving module and extensibility mechanisms of the
Business ByDesign platform. Demonstrators for these case studies will be built for experimental
cloud environments for quantitative evaluations.

1.1 Summary

PACE is an exciting endeavor that has the potential to create a new programming paradigm that
will revolutionize the way we develop software for a novel computing model. Of course, as any
project of this kind, PACE will not deliver a silver bullet, but rather foundations to build upon
and to develop further. This is a very ambitious project, where many parts have to work well
individually and in concert, in order to reach the objectives. Yet, my significant achievements in
programming language design in the last 10 years and the planned cooperation with the Scala team
at EPFL make PACE feasible.

10



Mezini B1 – References PACE

References

[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,
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