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// Modern software increasingly processes massive 

amounts of data, which has led to the emergence of 

advanced programming models. In these models, 

the software engineer declaratively defines 

computations as compositions of other computations 

without explicitly modeling how the data should 

flow along dependency relations, letting the runtime 

automatically manage and optimize data flows. // 

WE’VE COME A LONG WAY from 
painstakingly feeding problem data-
sets into computer systems via punch 
cards. Computer systems have be-
come much more convenient to inter-
act with and are able to process much 
larger datasets, which are often kept 
in large-scale storage systems. How-
ever, computer systems are also 

much more commonly involved in 
processing data that’s produced or 
modified online as the program exe-
cutes, sometimes perpetually. This is 
particularly the case for applications 
specifically developed to react to 
real-world events, such as tempera-
ture changes or other environmental 
cues captured through sensors. 

The last decade has thus seen the 
advent of abstractions and para-
digms that support the develop-
ment of reactive software. Central 
to such approaches is the concept 
of events that capture the dynamic 
occurrences that trigger computa-
tions. Over the years, several steps 
have been made in this direction, 
including language-level support for 
events, continuous time-changing 
values (signals or behaviors), con-
straints, asynchronous execution, 
and futures. The ever-increasing 
complexity of reactive applications 
has recently raised new interest 
around these abstractions. 

The new paradigm of reactive 
programming focuses on a more 
hol istic view that demands seamless 
integration of existing solutions, in-
cluding constraints resolution to en-
force functional dependencies, auto-
matic updates of dependent values, 
and interoperability among differ-
ent reactive abstractions such as sig-
nals and event streams. The goal is 
to raise the abstraction level: rather 
than explicitly reifying events in the 
software, changes to variable values 
are detected and propagated through 
programs by re-computing the val-
ues of all dependent variables implic-
itly during runtime. Interestingly, a 
similar trend can be observed in re-
cent big data analysis software. Not 
too long ago, such programs were 
typically perceived as resembling 
complex queries applied to very large 
yet static datasets. 

Researchers and practitioners 
have proposed a host of program-
ming languages and models for 
such programs, which tend to mix 
imperative and declarative traits 
to expose the order of a non-cyclic 
computation network and are cen-
tered on some form of data structure 
conceptualizing the current state of 
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computation. Despite improvements 
in running time of such analysis pro-
grams, their execution can still take 
sufficiently long to make repeated 
complete executions of the same pro-
gram upon additions or changes to 
the underlying datasets prohibitively 
expensive. Consequently, recent im-
provements consist of enabling in-
cremental computations—that is, re-
executing only those parts of queries 
that become invalid or incomplete by 
dataset changes. 

Although reactive and big data 
analysis applications have little in 
common at first glance, we observe 
a shared trend in their respective 
programming models: they strive to 
capture what the computation ought 
to do but not when (or how) because 
the data is subject to computation 
changes over time (thus we speak 
of “data flows”). The execution en-
gines and language runtimes increas-
ingly carry the burden of determin-
ing which parts of computations are 
affected by which fluctuations in the 
processed data. As it’s unlikely that 
runtime systems can determine these 
things entirely on their own—at least 
efficiently—or that such transpar-
ency would even serve the program-
mer, new abstractions are needed to 
capture such implicit flows in addi-
tion to underlying runtime support. 

Events and Reactive 
Programming 
Events are a common way for pro-
grammers to reason about significant 
conditions in both the environment 
and the program’s execution. Main-
stream languages have supported 
dedicated abstractions for events 
for a long time. For example, in C# 
events are class attributes that belong 
to the class’s interface, in addition 
to methods and fields. Over the last 
few years, researchers have proposed 

increasingly sophisticated event mod-
els; see the “Advanced Programming 
with Events” sidebar for examples.

Integration into the object- 
oriented (OO) programming model 
has been enhanced to extend OO 
concepts such as inheritance to 
events and event handling. Early ap-
proaches like JavaPS implemented 
events as specific objects.1 In EScala, 
events are first-class entities: as in 

C#, they’re object attributes, just like 
methods and fields, and their defini-
tion is subject to polymorphic access 
and late binding.2 Our investigations 
show that this is highly valuable, 
enabling programmers to encode a 
class’s behavior as a state machine 
and extend it at this high level of ab-
straction rather than at the level of 
individual methods.3

Events in isolation improve lit-
tle over the observer design pat-
tern. The difference becomes crucial 
when expressive operators for event 
combination are available to corre-
late events to define new (complex) 
events that capture high-level situa-
tions of interest. Advanced systems 
support operators to combine events 
with increasing levels of expres-
siveness. For example, the e1||e2 ex-
pression in EScala returns an event 
that fires when either e1 or e2 fire. 
Full-fledged embeddings of complex 
event processing such EventJava,4 or 
stream-processing languages such as 
SPL,5 support complex queries over 
event streams, including time win-
dows and joins. 

In parallel to the development of 
richer event models, other research-
ers have focused on more inher-
ent data-flow and change-driven 
solutions for reactive applications. 
These approaches have old roots. 
For example, the Garnet and Amu-
let graphical toolkits support auto-
matic constraint resolution to re-
lieve the programmer from manual 
updates of the view.6 In functional 

reactive programming (FRP), devel-
opers specify the functional depen-
dencies among time-changing val-
ues in a reactive application, and the 
language runtime is responsible for 
performing the necessary updates 
(see the “Reactive Programming and 
Languages” sidebar).7 FRP was de-
veloped in the strict functional lan-
guage Haskell and initially applied 
to graphical animations; to date, re-
searchers have applied it to several 
fields, including robotics and wire-
less sensor networks. 

The fundamental concept in re-
active languages is that program-
mers don’t directly handle the 
control flow—rather, execution is 
driven by the implicit flow of data 
and the need to update values. 
Programmers specify constraints 
that express functional dependen-
cies among values in the applica-
tion, and the language runtime 
enforces these constraints without 
any further effort on the program-
mer’s part. 

More recently, these approaches 
have inspired many embeddings of 

Events in isolation improve little  
over the observer design pattern. 
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domain-specific languages (DSLs) 
and functional constraints in existing 
(imperative) programming languages. 
The advantage of this solution is that 
programmers specify a functional 

dependency in an intuitive, declara-
tive way. Consequently, reactions are 
directly expressed, don’t need to be 
inferred from the control flow, and 
can be easily composed. 

In practice, continuous time-
changing values—also known as sig-
nals—aren’t enough. The need for 
events (discrete time-changing values) 
is explained by two observations:

ADVANCED PROGRAMMING WITH EVENTS 
Event-based languages include Join Java,1 which captures 
events by specific asynchronous methods and supports join-
ing of multiple events, and Ptolemy,2 which supports features 
known from aspect-oriented programming (AOP).3 In AOP, 
advices are triggered at points in the program’s execution (for 
example, the end of a method call) that are referred to as join 
points, which can be seen as events that occur during the ex-
ecution and treated uniformly with other events. For example, 
EScala before(method) and after(method) events are triggered 
before and after a method’s execution. Also, in event-based 
languages that integrate AOP features, programmers can refer 
to all events of a certain type, a feature that resembles AOP 
quantification. As an example of an expressive event system, 
look at the following slice of a drawing application in EScala:

1 abstract class Figure { ... 
2   protected evt moved[Unit] = after(moveBy) 
3   evt resized[Unit] 
4   evt changed[Unit] = resized | | moved | | after(setColor) 
5   evt invalidated[Rectangle] = changed.map(() => getBounds()) 
6  ... 
7   def moveBy(dx: Int, dy: Int) { position.move(dx, dy) } 
8   def setColor(col: Color) { color = col } 
9   def getBounds(): Rectangle 
10  ... 
11 } 
12 class Rectangle extends Figure { 
13   evt resized[Unit] = after(resize) | | after(setBounds) 
14   override evt moved[Unit] = super.moved | | after(setBounds) 
15  ... 
16   def resize(size: Size) { this.size = size } 
17   def setBounds(x1: Int, y1: Int, x2: Int, y2: Int) { ... } 
18 } 

Implicit events, such as after(moveBy) in the Figure class, 
are automatically triggered at the end of the associated meth-
od’s execution (moveBy, in this case). Events can be defined 
declaratively by event expressions: the event changed is trig-
gered when one of the events resized, moved, or after(setColor) 
is triggered. EScala events integrate with objects in several 
ways. Events support visibility modifiers, and abstract events, 
such as resized, can be refined in subclasses. Events can be 

overridden in subclasses (such as moved), and the inherited 
definitions can be accessed by super. Events are late-bound: 
in the expression f.changed, the definition of changed in Figure 
or in Rectangle can be picked up depending on the dynamic 
type of f. 

JEScala extends EScala to include asynchronous events 
and joins such as Join Java and EventJava.4 Join expressions 
fire an event after two or more events combined by & occur 
in any order. Multiple joins can be combined in disjunctions 
using the | operator; when multiple joins fire inside the same 
disjunction, one is chosen non-deterministically. Joins offer 
an alternative to thread-based concurrency. In the following 
Actor example, messages are asynchronous events (Lines 
2-3); a disjunction (Line 9) ensures that a single message is 
processed at a time:

1 class Actor { 
2   async evt helloMsg[Unit] = ... 
3   async evt byeMsg[Unit] = ... 
4 
5   sync evt threadReady[Unit] 
6   async evt start[Unit] 
7   start += {while(true){threadReady()}} 
8
9   evt (doHelloMsg,doByeMsg) = (threadReady & helloMsg) 
10                                | (threadReady & byeMsg) 
11   doHelloMsg += { println(“Hello”) } 
12   doByeMsg += ... 
13 } 
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• Events come from external 
phenomena that are inherently 
discrete, such as an interrupt or 
new data from a sensor. 

• Events are better suited for 
modeling certain behaviors. In 
principle, a mouse click can be 
modeled as a Boolean continu-
ous time-changing value that 
switches to true when the mouse 
is clicked, but most program-
mers would rather think of a 
mouse click as an event. For this 
reason, existing reactive lan-
guages provide both signals and 
events. 

Reactive programming is an 
emerging trend, and identifying the 
boundaries of this field is hard. How-
ever, the following principles seem 
valid in general:

• Declarative style. Reactive 
behavior is defined in a direct, 
convenient, declarative style 
instead of encoding it in design 
patterns or through imperative 
updates of program state. Reac-
tions are directly expressed and 
don’t need to be encoded into 
the program’s control flow. 

• Composition. Abstractions al-
low for composition of more 
complex reactions. Traditional 
OO applications express re-
actions in callbacks that are 
executed when an observable 
changes. However, callbacks 
typically have side effects 
that modify the application’s 
state but don’t return a value. 
Consequently, they’re hard to 
combine. Instead, events can be 
combined through combinators, 
and signals can be combined 
directly into more complex reac-
tive expressions. 

• Automation. Programmer 

effort is reduced by delegating 
the responsibility of reacting to 
changes in program state and 
updating corresponding enti-
ties to language runtime. This 
solution has several advantages. 
Reactive code is less error-prone 

because programmers don’t 
forget to update dependen-
cies (which introduce incon-
sistencies) and don’t update 
defensively, independently of 
necessity (which wastes compu-
tational resources). In addition, 
automation enables optimi-
zation and more automated 
memory management. 

• Interoperability. Different reac-
tive abstractions can interop-
erate. Converting events into 
signals and back has an impor-
tant role in practice. Several 
existing OO applications model 
state as object fields that are 
imperatively updated. Conver-
sions allow programmers to take 
advantage of the design based 
on signals while still preserving 
compatibility with the exist-
ing nonfunctional code and 
the event-based design of many 
applications. 

These principles—centered on the 
concept of implicit flows—highlight 
a significant similarity between reac-
tive programming and big data anal-
ysis. The similarities between the two 
domains open perspectives for soft-
ware that combine both paradigms.

Big Data Analysis 
Technologies spearheaded by 
Google’s efforts such as the Google 
file system (GFS) or the distributed 
implementation of the MapReduce 
framework originally introduced 
in the Lisp programming language 

have ushered in a new era of scalable 
computing.8 Through Apache’s open 
source versions of such systems, bun-
dled under the name Hadoop, these 
technologies have become widely 
available; they’re currently consid-
ered part of the standard toolkit for 
programming with big data. GFS 
and the Hadoop distributed file sys-
tem (HDFS) achieve scalability es-
sentially by restricting write opera-
tions on files from arbitrary updates 
to append-only writes. HDFS serves 
as the default storage medium for 
data handled by Hadoop MapRe-
duce or for results created by the 
same. With a distributed file system 
used between MapReduce tasks, 
multiple individual local disks used 
between the map and reduce phases 
of such tasks, and several mappers 
and reducers splitting the workload, 
the MapReduce toolchain can scale 
to very large input files. 

To ease the burden on program-
mers, several high-level scripting 
and programming languages and 
language extensions have been in-
troduced, exposing data flow to par-
allelization. They view programs 
as directed acyclic graphs (DAGs), 
with edges representing the flow of 
data and nodes representing (sets 

Reactive programming 
is an emerging trend, and identifying  

the boundaries of this field is hard. 
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of) operations involving data from 
their incoming edges and results be-
ing passed onto outgoing edges. Pig 
Latin, an untyped scripting language 
from Yahoo, is a popular example of 
such a language. Hadoop Pig imple-
ments it on top of Hadoop MapRe-
duce.9 Languages such as Pig Latin 
can express data analysis jobs across 
domains like science and engineer-
ing, business and finance, and gov-
ernment and defense. In correspond-
ing programs, intermediate state is 
typically incarnated by various types 
of data structures or collections rep-
resenting large datasets (see the “Pro-
gramming with Big Data” sidebar). 

In general, languages for big 
data analysis roughly build on two 
abstractions: 

• Data structures. The state of a 
DAG-based computation at a 
particular point in the DAG con-
sists of intermediate data, which 
is conceptualized by a data 
structure. Data constraints and 
characteristics (ordering, index-
ing) are captured through data 
structure choice (bag versus set, 
set versus associative map, and so 
on). Pig Latin, for example, lever-
ages bags and maps, while others 
propose collections and tables. 

• Operations and functions. Com-
putation itself is expressed via 
operations more typical of rela-
tional query models (filter, group, 
join) or functions (max, min, 
avg), which are applied to data 
structures; results are typically 
represented as data structures. 

When data analysis programs 
or subprograms are translated to 
MapReduce jobs, the actual data 
structures will never be incarnated as 
such in a given process’s address space 
or even across several such address 
spaces; these data structures serve 
uniquely as conceptual abstractions. 

REACTIVE PROGRAMMING  
AND LANGUAGES
Reactive programming is based on constraints enforced by 
the runtime. Consider a functional dependency among the 
variables a, b, and c such that a = b + c:

1 a = 2
2 b = 3
3 c = a + b
4 a = 4 // c is still 5
5 c = a + b // c = 7

1 a = 2
2 b = 3
3 c := a + b // Constraint
4 a = 4 // c = 7

In imperative programming (left), the functional 
dependency is true only immediately after the execution of 
the statement in Line 3. As soon as a change occurs, the 
functional dependency is no longer valid and must be updated 
manually (Line 5). Reactive languages (right) automatically 
enforce constraints (Line 3), recomputing functional 
dependencies when they aren’t valid anymore. 

As an illustration of more explicit use of constraints, 
consider the following minimal GUI application in the REScala 
reactive language.1 The application counts the number of 
mouse clicks on a button, displays the result, and changes 
the button label when counting starts. In REScala, signals 
express functional dependencies in a declarative style. 
The traditional design without reactive programming for 
such an application adopts the observer design pattern. An 
implementation (simplified for the presentation) using the 
Scala Swing libraries looks as follows: 

1 /* Create the graphics */ 
2 title = “Reactive Swing App” 
3 val button = new Button { 
4  text = “Click me!” 
5 } 
6 val label = new Label { 
7  text = “No button clicks registered” 
8 } 
9 contents = new BoxPanel(Orientation.Vertical) { 
10  contents += button 
11  contents += label 
12 } 
13 /* The logic */ 
14 listenTo(button) 
15 var nClicks = 0 
16 reactions += { 
17  case ButtonClicked(b) => 
18   nClicks += 1 
19   label.text = “Number of button clicks: “ + nClicks 
20   if (nClicks > 0) 
21    button.text = “Click me again” 
22 } 

The previous code requires inspecting the whole control 
flow to understand the update logic. For example, the text 
over the button is initialized in Line 4 and assigned in the 
statement in Line 21, which is conditionally executed based 
on variable nClicks, modified in Line 18. In the reactive 
programming version using REScala, the whole update logic 
is captured in Lines 5-11: 
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Restricting big data analysis and 
processing to computations that can 
be represented as DAGs is a strong 
limitation. Two major extensions of 
the computational model promoted 
by MapReduce and its associated 
early high-level languages address 
this limitation: 

• Incremental computation. 
Support for such computation 
avoids making changes to input 
re-executing entire programs. 
Incremental computation is par-
ticularly sensible in the context 
of big data—many applications 
operate on input datasets such 

as logs, client activity records, or 
user records that are constantly 
extended. Based on the append-
only semantics for many such 
files (by virtue of the distrib-
uted file system), extensions to 
datasets are naturally captured 
through stratified appendages. 

• Iterative computation. Support 
for cycles during computation 
allows for a far more expres-
sive computing model and is 
especially relevant in big data 
processing, where due to sheer 
data size, “one-shot” solutions 
are impossible and computations 
are iterated until they converge 

satisfactorily. A popular ex-
ample is Google’s page rank for 
determining webpage popularity, 
which originally motivated Map-
Reduce. Other examples include 
machine-learning algorithms 
such as logistic regression. 

Based on these needs, recent pro-
gramming models aim to support it-
erative or incremental computing, or 
both. To that end, datasets are kept 
in main memory and partitioned 
across the various nodes necessary 
to accommodate them, thus mak-
ing cross-accesses for updates much 
faster than on stored files. 

1 title = “Reactive Swing App” 
2 val label = new ReactiveLabel 
3 val button = new ReactiveButton 
4
5 val nClicks = button.clicked.count 
6 label.text = Signal{ 
7  (if (nClicks() == 0) “No” 
8  else nClicks()) + “ button clicks registered” } 
9 button.text = Signal{ 
10  “Click me” + (if (nClicks() == 0) “!” 
11                     else “ again “) } 
12 contents = new BoxPanel(Orientation.Vertical) { 
13  contents += button 
14  contents += label 
15 } 

In reactive languages, conversions between signals 
and events assume great importance. Conversions let you 
introduce signal-based (declarative) code into object-oriented 
event-based applications, abstract over state, and concisely 
express reactive computations. 

The following REScala code snippet uses the snapshot 
conversion function to combine a signal that holds the 
current mouse position and a click event from the mouse. As 
a result, the snapshot returns a signal that holds the position 
of the last mouse click. The other example demonstrates 
the last(n) function, which holds a list of the last n values 
associated to an event stream. Here, last(n) computes the 
average in a sliding window of five values over a stream of 
events carrying integers:

1 val clicked: Event[Unit] = mouse.clicked 
2 val position: Signal[(Int,Int)] = mouse.position 
3 val lastClick: Signal[(Int,Int)] = position snapshot clicked 

1 val e = new ImperativeEvent[Double] 
2 val window = e.last(5) 
3 val mean = Signal { window().sum / window().length } 
4 mean.changed += { println(_) } 

Other reactive languages include FrTime,2  Flapjax,3 and 
Scala.React.4 Currently, reactive languages are being extend-
ed to support automated propagation of individual elements 
of nontrivial data structures (lists5) or to distribution of reac-
tive values over many nodes.6 
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Towards Unified 
Programming with 
Implicit Flows 
The two families of programming 
languages and language extensions 
considered in the previous sections 
share a new paradigm for processing 
data: implicit data flows “through” 
computations. While the two thrusts 
currently still emphasize different 
settings and requirements—low- 
latency in-memory processing on 
one or a few nodes with small data 
volumes for reactive programming, 
and high throughput processing of 
large datasets distributed across 
many nodes for big data analysis—
confluences are starting to emerge: 

• Approaches in each family are 
extended with features character-
istic of the other family. Spe-
cifically, implicit propagation of 
changes in reactive programming 
is generalized from simple values 
to data collections and from local 
to distributed computations; sup-
port for incremental and iterative 
computations is being added to 
big data analytics approaches. 

• Approaches with uniform ab-
stractions for processing het-
erogeneous stored and online 
data sources are emerging. The 
reactive extensions (Rx)10 of 
.NET represent a library-based 
approach to modeling complex 

event and stream processing by 
LINQ operators,11 which are also 
used for stored data processing; 
following DEDUCE,12 Shark 
combines MapReduce,13 designed 
for stored data analysis, with sup-
port for processing online data. 

These first steps are promising, 
but there’s a need for a much stronger 
confluence. We believe that modern 
applications would benefit from inte-
grating time-changing values (signals 
and big data processing abstractions) 
and making them composable. To en-
able such compositions, we need to 
conciliate propagation of changes on 
both immutable data in the style of 

PROGRAMMING WITH BIG DATA 
Several programming languages and models are similar in 
spirit to Pig Latin. FlumeJava is a library for data-flow pro-
cessing in Java proposed by Google1 and also implemented 
by Apache Crunch.2 FlumeJava compiles corresponding tasks 
to MapReduce jobs at runtime. Like the early Dryad language3 
or Pig Latin, the model comes with standard operators for 
joining data flows but also supports application-defined 
functions. The following implements a simple word count in 
FlumeJava: 

1 PCollection<String> lines = 
2   readTextFileCollection(input_file); 
3 PCollection<String> words = lines.parallelDo( 
4   new LineToWordFunction<String, String>(), 
5   collectionOf(strings())); 
6 PTable<String, Long> wordCounts = words.count(); 
7 wordCounts.write(output_file); 

First the program reads the input_file as a text file, and 
then, with some degree of parallelization chosen by the run-
time, parses lines, generating a collection of strings. Next the 
program creates a table indexed by words, with the counts 
for the respective words, before, finally, writing the table to 
output_file. 

Early innovators in terms of incremental and iterative 
computation were the Incoop4 and iHadoop5 extensions of 
Hadoop, respectively. Recent examples of data-processing 
models supporting these two features by storing data in 
main memory include distributed arrays in Presto6 or resilient 

distributed datasets in Spark.7 Incremental computation is 
thus far not supported by FlumeJava or Crunch; in the word 
count example, incremental computation would consist of 
augmenting the word counts’ output to output_file follow-
ing the order of the program, upon extensions to input_file. 
With an in-memory representation of the wordCounts table, it 
would suffice to apply the previous stages to any lines added 
to the input_file and subsequently adding the corresponding 
new word counts to existing ones in wordCounts, or creating 
new entries to the table for words that previously weren’t 
encountered. 

References 
 1. C. Chambers et al., “FlumeJava: Easy, Efficient Data-Parallel Pipe-

lines,” Proc. ACM SIGPLAN Conf. Programming Language Design and 
Implementation, 2010, pp. 363–375.

 2. “Incubator Crunch,” Apache Software Foundation, 2013; http:// 
incubator.apache.org/projects/crunch.html. 

 3. M. Isard et al., “Dryad: Distributed Data-Parallel Programs from 
Sequential Building Blocks,” SIGOPS Operating System Rev., vol. 41, 
2007, pp. 59–72. 

 4. P. Bhatotia et al., “Incoop: MapReduce for Incremental Computa-
tions,” Proc. 2nd ACM Symp. Cloud Computing, 2011, article no. 7.

 5. E. Elnikety, T. Elsayed, and H. Ramadan, “iHadoop: Asynchronous 
Iterations for MapReduce,” Proc. 3rd Int’l Conf. Cloud Computing 
Technology and Science, 2011, pp. 81–90.

 6. S. Venkataraman et al., “Using R for Iterative and Incremental 
Processing,” Proc. 4th Usenix Conf. Hot Topics in Cloud Computing, 
2012, p. 11.

 7. M. Zaharia et al., “Resilient Distributed Datasets: A Fault-Tolerant 
Abstraction for In-memory Cluster Computing,” Proc. 9th Usenix Conf. 
Networked Systems Design and Implementation, 2012, p. 2.

s5sal.indd   58 8/7/14   1:41 PM



SEPTEMBER/OCTOBER 2014  |  IEEE SOFTWARE 59

Reactive Animation,” Proc. 2nd ACM 
SIGPLAN Int’l Conf. Functional Pro-
gramming, 1997, pp. 263–273.

 8. S. Ghemawat, H. Gobioff, and S.-T. Leung, 
“The Google File System,” Proc. 19th 
ACM Symp. Operating Systems Principles, 
2003, pp. 29–43. 

 9. C. Olston et al., “Pig Latin: A Not-so-For-
eign Language for Data Processing,” Proc. 
ACM SIGMOD Int’l Conf. Management 
of Data, 2008, pp. 1099–1110. 

 10. J. Liberty and P. Betts, Programming 
Reactive Extensions and LINQ, 1st ed., 
Apress, 2011. 

 11. E. Meijer, B. Beckman, and G. Bierman, 
“LINQ: Reconciling Object, Relations and 
XML in the .Net Framework,” Proc. ACM 
SIGMOD Int’l Conf. Management of 
Data, 2006, p. 706.

 12. V. Kumar et al., “DEDUCE: At the Inter-
section of MapReduce and Stream Process-
ing,” Proc. 13th Int’l Conf. Extending 
Database Technology, 2010, pp. 657–662.

 13. R. Xin et al., “Shark: SQL and Rich Analytics 
at Scale,” Proc. ACM SIGMOD Int’l Conf. 
Management of Data, 2013, pp. 13–24. 

US Defense Advanced Research Projects 
Agency, grant number #N11AP20014. 

References
 1. P. Eugster and R. Guerraoui, “Distributed 

Programming with Typed Events,” IEEE 
Software, vol. 21, no. 2, 2004, pp. 56–64. 

 2. V. Gasiunas et al., “EScala: Modular Event-
Driven Object Interactions in Scala,” Proc. 
10th Int’l Conf. Aspect-Oriented Software 
Development, 2011, pp. 227–240. 

 3. G. Salvaneschi and M. Mezini, “To-
wards Reactive Programming for 
Object- Oriented Applications,” Trans. 
Aspect-Oriented Software Development 
XI, LNCS 8400, Springer, 2014, pages 
227–261.

 4. P. Eugster and K. Jayaram, “EventJava: An 
Extension of Java for Event Correlation,” 
Proc. 23rd European Conf. Object-Ori-
ented Programming, 2009, pp. 570–594. 

 5. M. Hirzel et al., “IBM Streams Processing 
Language: Analyzing Big Data in Motion,” 
IBM J. Research and Development, vol. 
57, nos. 3/4, 2013, article no. 1.

 6. B.A. Myers et al., “The Amulet Environ-
ment: New Models for Effective User 
Interface Software Development,” IEEE 
Trans. Software Eng., vol. 23, no. 6, 1997, 
pp. 347–365. 

 7. C. Elliott and P. Hudak, “Functional 

Selected CS articles and columns 
are also available for free at 
http://ComputingNow.computer.org.

GUIDO SALVANESCHI is a postdoctoral researcher at Tech-
nische Universität Darmstadt. He’s interested in programming 
languages, reactive programming, event-based programming, 
and languages for adaptive systems. Salvaneschi received a 
PhD in computer science from Politecnico di Milano. Contact 
him at salvaneschi@cs.tu-darmstadt.de.

MIRA MEZINI is a professor of computer science at Tech-
nische Universität Darmstadt. Her research interests include 
programming languages and software development paradigms/
tools, adaptable software architectures, software product-line 
engineering, and service-oriented architectures. Mezini received 
a PhD in computer science from the University of Siegen. 
She has served as the general and program chairs of several 
software engineering and programing language conferences 
and regularly serves on their program committees. Contact her 
at mezini@informatik.tu-darmstadt.te.

PATRICK EUGSTER is an associate professor in computer 
science at Purdue University, on leave for Technische Universität 
Darmstadt. He’s interested in distributed systems and program-
ming languages. Eugster received a PhD in computer science 
from EPFL. He’s a recipient of the NSF Career Award (2007) 
and an ERC Consolidator Award (2012); he’s also a member of 
DARPA’s Computer Science Study Panel. Contact him at p@
cs.purdue.edu.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

FRP and mutable data characteristic 
of big data processing. Fine-grained 
changes over mutable data structures 
are an instance of a more general 
problem requiring further advances 
in incrementalization techniques. The 
database community has studied this 
for a long time under the label of view 
maintenance. More recently, research-
ers have applied incremental solutions 
to specifi c programming domains, 
such as incremental collections. How-
ever, attempts to incrementalize a 
generic program are just beginning. 
Beside incrementalization, language 
integration of uniform abstractions 
for implicit data fl ows could en-
able optimizations across data-fl ow 
graphs, offering opportunities to ap-
ply compiler optimizations such as in-
lining, partial evaluation and staging, 
loop fusion, and deforestation.

T he itegration of reactive pro-
gramming and big data anal-
ysis poses several challenges 

related to the composition of hetero-
geneous data management and pro-
cessing strategies. It could require ad-
vanced module concepts and related 
type systems to express functionality 
that abstracts over a whole range of 
processing strategies as well as differ-
ent data sources or sinks. A key chal-
lenge is to reconcile fl exibility with 
static typing to reduce runtime er-
rors. This aspect is especially impor-
tant in the context of big data, where 
a failure can propagate across depen-
dent computations and invalidate 
processing already performed. 
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